ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БРАТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра математики и физики

УТВ	ВЕРЖД <i>І</i>	АЮ:	
Прор	ректор	по учебной работе	
		Е.И.Луковникова	a
‹ ‹	>>	201	Γ.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ КОМПЛЕКСНЫЙ АНАЛИЗ

Б1.Б.08

НАПРАВЛЕНИЕ ПОДГОТОВКИ

01.03.02 Прикладная математика и информатика

ПРОФИЛЬ ПОДГОТОВКИ

Инженерия программного обеспечения

Программа академического бакалавриата

Квалификация (степень) выпускника: бакалавр

Приложение 4. Фонд оценочных средств для текущего контроля успеваемости

по дисциплине.....

32

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Вид деятельности выпускника

Дисциплина охватывает круг вопросов, относящихся к проектному и производственнотехнологическому, организационно-управленческому, научно-исследовательскому видам профессиональной деятельности выпускника в соответствии с компетенциями и видами деятельности, указанными в учебном плане.

Цель дисциплины

Целью изучения дисциплины является знакомство обучающихся с местом и ролью математики в современном мире, мировой культуре и истории; формирование личности обучающихся, развитие их интеллекта и способностей к логическому и алгоритмическому мышлению.

Обучение основным математическим методам, необходимым для анализа и моделирования устройств, процессов и явлений при поиске оптимальных решений для осуществления научнотехнического прогресса и выбора наилучших способов реализации этих решений, а также обучение методам обработки и анализа результатов экспериментальных данных.

Задачи дисциплины

Задачи дисциплины состоят в том, чтобы на примерах математических понятий и методов продемонстрировать обучающимся действие законов материального мира, сущность научного подхода, специфику математики и ее роль в научно-техническом прогрессе, а также создать фундамент математического образования, необходимый для развития профессиональных компетенций и для изучения последующих дисциплин.

Код компетенции	Содержание компетенций	Перечень планируемых результатов обучения по дисциплине				
1	2	3				
	способностью ис- пользовать базовые знания естествен- ных наук, матема- тики и информати-	Знать - виды и специфику источников достоверной математической информации, (учебники, учебные пособия, конспекты лекций, интернет, научные статьи). Уметь				
ОПК-1	ки, основные факты, концепции, принципы теорий, связанных с при-	- на основе найденной информации выбирать оптимальный способ решения математической проблемы или задачи; анализировать полученные результаты и делать на их основе выводы. Владеть				
	кладной математи- кой и информати- кой	- техниками выполнения расчетов и вычислений, навыками математиче- ской обработки результатов измерений и вычислений, представления ре- зультатов в требуемом виде.				
ОПК-2	способностью при- обретать новые научные и профес- сиональные знания, используя совре- менные образова- тельные и инфор- мационные техно- логии	Знать - способы поиска, интерпретации, представления в требуемом виде научной математической информации, использовать при этом современные образовательные и информационные технологии. Уметь - осуществлять целенаправленный поиск математической информации использовать различные источники информации в своей работе; проводить аналитические обзоры информации: структурировать, минимизировать, выделять главное, устанавливать связи между элементами. Владеть - приемами визуализации информации: представление в виде графиков схем, таблиц.				
ПК-2	способностью по- нимать, совершен- ствовать и приме- нять современный математический аппарат	Знать - основные математические понятия и методы исследования, особенности их применимости в разных научных областях, специфику математических символов. Уметь - грамотно применять основные математические символы, понятия и методы исследования. Владеть навыками решения задач из разных областей математики навыками использования измерительных и вычислительных устройств, информационных технологий для выполнения расчетов, вычислений, составления и оформления результатов решения задач.				

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина Б1.Б.08 Комплексный анализ относится к базовой части.

Дисциплина Комплексный анализ базируется на знаниях, полученных при изучении таких учебных дисциплин, как: Алгебра и геометрия, Математический анализ.

Основываясь на изучении перечисленных дисциплин, Комплексный анализ представляет основу для изучения дисциплин: Дифференциальные уравнения, Теория вероятностей и математическая статистика, Численные методы, Теория игр и исследование операций.

Такое системное междисциплинарное изучение направлено на достижение требуемого ФГОС уровня подготовки по квалификации бакалавр.

3. РАСПРЕДЕЛЕНИЕ ОБЪЕМА ДИСЦИПЛИНЫ

3.1. Распределение объема дисциплины по формам обучения

			Трудоемкость дисциплины в часах							D 3
Форма обучения	Kypc	Семестр	Всего часов (с экз.)	Аудиторных часов	Лекции	Лабораторные работы	Практические занятия	Самостоя- тельная ра- бота	Конт- рольная работа	Вид проме- жуточ- ной ат- тестации
1	2	3	4	5	6	7	8	9	10	11
Очная	2	3	144	68	34	-	34	31	кр	экзамен
Заочная	-	-	-	-	-	-	-	-	-	-
Заочная (ускоренное обучение)	-	-	-	-	-	-	-	-	-	-
Очно-заочная	-	-	-	-	-	-	-	-	-	-

3.2. Распределение объема дисциплины по видам учебных занятий и трудоемкости

Вид учебных занятий	Трудо- ем- кость	в т.ч. в интерактивной, активной,	Распределение по семестрам, час
	(час.)	инновационной формах, (час.)	3
1	2	3	4
I. Контактная работа обучающихся с пре- подавателем (всего)	68	34	68
Лекции (Лк)	34	20	34
Практические занятия (ПЗ)	34	14	34
Контрольная работа	+	-	+
Групповые (индивидуальные) консультации	+	-	+
II. Самостоятельная работа обучающихся (СР)	31	-	31
Подготовка к практическим занятиям	11	-	11
Подготовка к экзамену в течение семестра	10	-	10
Выполнение контрольной работы	10		10
ІІІ. Промежуточная аттестация экзамен	45	-	45
Общая трудоемкость дисциплины час.	144	-	144
зач. ед.	4	-	4

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Распределение разделов дисциплины по видам учебных занятий

- для очной формы обучения:

№ раз- дела и	Наименование	Трудоем-	мостоятел и т	Виды учебных занятий, включая са- мостоятельную работу обучающихся и трудоемкость; (час.)			
темы	раздела и тема дисциплины	кость, (час.)	лекции	занятия практи- ческие занятия	самостоя- тельная ра- бота обу- чающихся*		
1	2	3	4	5	6		
1.	Комплексные числа и множества на комплексной плоскости.	20	6	6	8		
1.1.	Понятие о комплексных числах. Формы записи комплексного числа. Изображение комплексных чисел. Модуль и аргумент.	10	3	3	4		
1.2.	Действия с комплексными числами. Извлечение корня из комплексного числа. Множества на комплексной плоскости.	10	3	3	4		
2.	Функции комплексного переменного	24	8	8	8		
2.1.	Действительная и мнимая части функции комплексного переменного.	6	2	2	2		
2.2.	Определения основных функций комплексного переменного.	6	2	2	2		
2.3.	Условия Коши-Римана. Аналитические функции. Восстановление аналитической функции по ее мнимой или действительной части. Гармонические функции.	6	2	2	2		
2.4.	Геометрический смысл модуля и аргумента производной аналитической функции. Конформные отображения.	6	2	2	2		
3.	Интеграл от функции комплексной переменной	20	6	6	8		
3.1	Определение интеграла от комплексной переменной. Независимость интеграла от аналитической функции от пути интегрирования.	10	3	3	4		
3.2	Теорема Коши. Интегральная формула Коши. Интегральная формула Коши для многосвязной области.	10	3	3	4		
4.	Ряды Тейлора. Ряды Лорана	19	8	8	3		
4.1.	Ряд Тейлора. Основные разложения в степенной ряд.	10	4	4	1		
4.2.	Ряд Лорана. Классификация особых точек функции по виду ряда Лорана.	9	4	4	2		
5.	Вычеты. Основная теорема о вычетах	16	6	6	4		
5.1	Вычет функции. Нахождение вычета в полюсе функции и в существенно особой точке. Основная теорема о вычетах. Вторая теорема о вычетах.	10	3	3	2		
5.2.	Вычисление определенных интегралов с помощью теоремы о вычетах. Вычисление определенных интегралов с помощью комплексной замены.	6	3	3	2		
	ИТОГО	99	34	34	31		

4.2. Содержание дисциплины, структурированное по разделам и темам

<u>№</u> раздела и темы	Наименование раздела и темы дисциплины	Содержание лекционных занятий	Вид занятия в интерактивной, активной, инно- вационной фор- мах, (час.)		
1.	2	3	4		
1.1.		ые числа и множества на комплексной плоскост Понятие о комплексных числах. Мнимая единица. Формы	и.		
	лах. Формы записи комплексного числа. Изображение комплексных чисел. Модуль и аргумент.	записи комплексного числа: алгебраическая, тригонометрическая, показательная. Изображение комплексных чисел. Модуль и аргумент. Сопряженные комплексные числа. Формула Эйлера.	Лекция-беседа (2 часа)		
1.2.	Действия с комплексными числами. Извлечение корня из комплексного числа. Множества на комплексной плоскости.	Сложение, умножение, деление комплексных чисел. Формула Муавра-Лапласа. Возведение в степень. Формула извлечения корня из комплексного числа. Построение линий и областей на комплексной плоскости, заданных уравнениями и неравенствами.	-		
2.		Функции комплексного переменного			
2.1.	части функции комплексного переменного.	Функции комплексного переменного. Действительная и мнимая части функции комплексного переменного. Нахождение образа линий при заданном отображении.	Лекция- беседа (2 часа)		
2.2.	Определения основных функций комплексного переменноций комплексного переменного. Показательная, логарифмическая, тригонометрические, ного. Обратные тригонометрические, гиперболические. Нахождение значений функций комплексн6ого переменного.				
2.3.	литические функции. Восстановление аналитиче- ской функции по ее мнимой или действительной части.	Условия Коши-Римана. Частные производные вещественной и мнимой части функций комплексного переменного. Аналитические функции. Нахождение производной аналитической функцию Восстановление аналитической функции по ее мнимой или действительной части. Гармонические функции.	Лекция- беседа (2 часа)		
2.4.	Геометрический смысл модуля и аргумента производной	Коэффициент преобразования подобия бесконечно малого линейного элемента в точке. Коэффициент растяжения и угол поворота при отображении. Геометрический смысл модуля и аргумента производной аналитической функции. Свойство сохранения углов и постоянство растяжений. Конформные отображения.	Лекция- беседа (2 часа)		
3.	Инте	грал от функции комплексной переменной			
3.1	Определение интеграла от комплексной переменной. Независимость интеграла от аналитической функции от пути интегрирования.	Односвязные и многосвязные области на комплексной плоскости. Интеграл по кривой и его вычисление. Определение интеграла от комплексной переменной. Независимость интеграла от аналитической функции от пути интегрирования. Формула Ньютона-Лейбница.	-		
3.2	формула Коши. Интегральная	Теорема Коши для односвязной области. Интегральная формула Коши. Интегральная формула Коши для многосвязной области. Вычисление интегралов по различным контурам непосредственно и по формуле Коши.	Лекция-беседа (2 часа)		
4.	D # V	Ряды Тейлора. Ряды Лорана			
4.1.	Ряд Тейлора. Основные разложения в степенной ряд.	ния, Даламбера, Коши. Абсолютная сходимость ряда. Сте- пенной ряд, область сходимости, радиус сходимости сте- пенного ряда. Основные разложения элементарных функ- ций в степенной ряд в окрестности нуля.	Лекция- беседа (2 часа)		
4.2.		Нули аналитической функции и их порядок. Два способа определения порядка нуля аналитической функции. Изолированные особые точки и их классификация: устранимая особая точка, полюс, существенно особая точка. Ряд Лорана, область сходимости. Разложение функций в ряд Лорана. Бесконечно удаленная точка. Классификация особых точек по виду ряда Лорана.	Лекция- беседа (2 часа)		
5.		Вычеты. Основная теорема о вычетах			
5.1		Вычеты. Вычисление вычетов в полюсах, существенно	Лекция- беседа		

	существенно особой точке. Основная теорема о вычетах. Вторая теорема о вычетах.	особых точках и в бесконечно удаленной точке. Коэффициент при первой отрицательной степени в лорановском разложении. Основная теорема о вычетах. Вторая теорема о вычетах. Вычисление интеграла в случае, когда внутри контура интегрирований находятся все особые точки функции.	(2 часа)
5.2			Лекция- беседа (2 часа)

4.3. Лабораторные работы учебным планом не предусмотрено.

4.4. Практические занятия

№ n/n	Номер раздела дисцип- лины	Наименование тем практических занятий	Объем в часах	Вид занятия в интерактивной, активной, инно- вационной фор- мах, (час.)
1	1.	Понятие о комплексных числах. Формы записи комплексного числа. Изображение комплексных чисел. Модуль и аргумент.	3	Занятие-тренинг (2 часа)
2		Действия с комплексными числами. Извлечение корня из комплексного числа. Множества на комплексной плоскости.	3	-
3		Действительная и мнимая части функции комплексного переменного.	2	Работа в малых группах (2 час)
4		Определения основных функций комплексного переменного.	2	Работа в малых группах (2 час)
5	2.	Условия Коши-Римана. Аналитические функции. Восстановление аналитической функции по ее мнимой или действительной части. Гармонические функции.	2	Работа в малых группах (2 час)
6		Геометрический смысл модуля и аргумента производной аналитической функции. Конформные отображения.	2	-
7	3.	Определение интеграла от комплексной переменной. Независимость интеграла от аналитической функции от пути интегрирования.	3	-
8		Теорема Коши. Интегральная формула Коши. Интегральная формула Коши для многосвязной области.	3	Работа в малых группах (2 час)
9		Ряд Тейлора. Основные разложения в степенной ряд.	4	-
10	4.	Ряд Лорана. Классификация особых точек функции по виду ряда Лорана.	4	Работа в малых группах (2 час)
11	5.	Вычет функции. Нахождение вычета в полюсе функции и в существенно особой точке. Основная теорема о вычетах. Вторая теорема о вычетах.	3	Работа в малых группах (2 час)
12	5.	Вычисление определенных интегралов с помощью теоремы о вычетах. Вычисление определенных интегралов с помощью комплексной замены.	3	-
		ИТОГО	34	14

4.5. Контрольные мероприятия: контрольная работа

Контрольная работа выполняется как индивидуальное домашнее задание. Зачтенные работы оформляются и включаются в портфолио студента.

Контрольная работа

Цель: 1. Научиться выполнять действия с комплексными числами, изображать их на комплексной плоскости.

2. Научиться решать задачи практической направленности с помощью объектов комплексного анализа.

Содержание: 5 заданий.

1. Изобразить на комплексной плоскости множество точек, удовлетворяющих условиям:

$$1 \le \text{Re}(z+1) \le 3$$

2. Восстановить аналитическую функцию по ее действительной части

$$u = x^3 - 3xy^2$$
 $f(1) = 2i + 1$

3. Вычислить интеграл $\int (1+i-2\overline{z})dz$ по дуге параболы $y=x^2$, соединяющей точки $z_1 = 0$ и $z_2 = 1 + i$

4. Найти все разложения функции в ряды Лорана по степеням $z-z_0$ и установить области

сходимости полученных разложений.

$$f(z) = \frac{1}{z^2(z-1)}, \ z_0 = 1$$

5. Найти вычеты функции относительно бесконечно удаленной точки. $f(z) = \frac{z^4 + z}{z^6 - 1}$

Выдача задания, прием контрольных работ проводится в соответствии с календарным учебным графиком.

Оценка	Критерии оценки контрольной работы
Зачтено	«Зачтено» ставится при условии правильного выполнения всех заданий.
Не зачтено	Если не выполнено хотя бы одно из обязательных заданий, то студент полу-
	чает оценку «Не зачтено» и не допускается к семестровым контрольным ме-
	роприятиям: зачету или экзамену в соответствии с учебным планом.

5. МАТРИЦА СООТНЕСЕНИЯ РАЗДЕЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ К ФОРМИРУЕМЫМ В НИХ КОМПЕТЕНЦИЯМ И ОЦЕНКЕ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Компетенции	Кол-во	Компе- тенции			Σ κοмп.	t_{cp} , vac	Вид учебных занятий	Оценка результатов
№, наименование	часов	ОПК		ПК				
разделов дисциплины	 	1	2	2				
1	2	3	4	5	6	7	8	9
1. Комплексные числа и множества на комплексной плоскости	20	+	+	+	3	6,6	Лк, ПЗ	кр, экзамен
2. Функции комплексного переменного	24	+	+	+	3	8	Лк, ПЗ	кр, экзамен
3. Интеграл от функции комплексной переменной	20	+	+	+	3	6,6	Лк, ПЗ	кр, экзамен
4. Ряды Тейлора. Ряды Лорана	24	+	+	+	3	8	Лк, ПЗ	кр, экзамен
5. Вычеты. Основная теорема о вычетах	20	+	+	+	3	6,6	Лк, ПЗ	кр, экзамен
всего часов	108	36	36	36	3	36		

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

а) Подготовка к лекционным и практическим занятиям

- 1. Сборник задач по математике для втузов. В 2 ч. Ч.2. Специальные разделы математического анализа./ В.А. Болгов и др.-М.: Наука., 1981.- 368 с.
- 2. Высшая математика в упражнениях и задачах. В 2 ч. Ч.2: Учебное пособие для вузов/П.Е. Данко, А.Г.Попов, Т.Я.Кожевникова.-7-е изд., испр.- М.: Оникс -2008.-448 с.

б) Самоподготовка и самопроверка

- 1. Письменный Д.Т. Конспект лекций по высшей математике: Полный курс/ Д.Т. Письменный. 7-е изд.-М.: Айрис-Пресс, 2008.- 608 с.
- 2. Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, Братск: БрГУ, 2010. 86 с.

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

№	Наименование издания	Вид заня- тия (Лк, ПЗ, кр)	Количе- ство экземпля- ров в биб- лиотеке, шт.	Обеспе- чен- ность, (экз./ чел.)
1	2	3	4	5
	Основная литература			
1.	Шипачев В.С. Высшая математика: учебное пособие/ В.С.Шипачев8-е изд., переработанное и дополненное М.:Юрайт, 2011 447 с.	Лк, ПЗ, кр	26	1
2.	Письменный, Д. Т. Конспект лекций по высшей математике: полный курс / Д. Т. Письменный 14-е изд., испр М.: АЙРИС-ПРЕСС, 2017 608 с.	Лк, ПЗ, кр	1294 включая аналоги	1
	Дополнительная литература	ì		
3.	Кузнецов, Л.А. Сборник заданий по высшей математике. Типовые расчеты: Учеб. пособие для вузов / Л.А. Кузнецов. – 11-е изд., стеоретип СПБ: Лань, 2008. – 240 с.	Лк, ПЗ, кр	248 (включая аналоги)	1
4.	Соломенцев, Е. Д. Функции комплексного переменного и их применения: учебник / Е. Д. Соломенцев Москва: Высшая школа, 1988 166 с.	Лк, ПЗ, кр	4	0,25
5.	Краснов, М. Л. Функции комплексного переменного. Операционное исчисление. Теория устойчивости: учебное пособие / М. Л. Краснов, Л. И. Киселев, Г. И. Макаренко Москва: Наука, 1971 256 с.	Лк, ПЗ, кр	5	0,31
6.	Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, - Братск: БрГУ, 2010. – 86 с.	Лк, ПЗ, кр	104	1
7.	Данко, П. Е. Высшая математика в упражнениях и задачах. В 2 ч. Ч.1 :учебное пособие для вузов / П. Е. Данко, А. Г. Попов, Т.Я. Кожевникова 6-е изд М.: "Оникс 21 век",: Высшая школа, 2003 - 304 с.	Лк, ПЗ, кр	288	1

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ» НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В процессе обучения студенты могут использовать общие ресурсы:

1. Электронный каталог библиотеки БрГУ

http://irbis.brstu.ru/CGI/irbis64r_15/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=BOOK &P21DBN=BOOK&S21CNR=&Z21ID=

- 2. Электронная библиотека БрГУ http://ecat.brstu.ru/catalog
- 3. Электронно-библиотечная система «Университетская библиотека online» http://biblioclub.ru
- 4. Электронно-библиотечная система «Издательство «Лань» http://e.lanbook.com
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru
- 6. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru
- 7. Университетская информационная система РОССИЯ (УИС РОССИЯ) https://uisrussia.msu.ru/

Кроме того, всегда доступны специальные тематические сайты. Например:

- 1. http://mathserfer.com/problist.php?tema=vect_act;
- 2. http://libedu.ru/l_b/minorskii_v_p_/sbornik_zadach_po_vysshei_matematike.html;
- 3. http://www.exponenta.ru/educat/news/kuleshov/index.asp;
- 4. http://www.allmath.ru/.

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Обучающийся должен разработать собственный режим равномерного освоения дисциплины. Подготовка студента к предстоящей лекции включает в себя ряд важных познавательно-практических этапов:

- чтение записей, сделанных в процессе слушания и конспектирования предыдущей лекции, вынесение на поля всего, что требуется при дальнейшей работе с конспектом и учебником;
- техническое оформление записей (подчеркивание, выделение главного, выводов, доказательств);
 - выполнение практических заданий преподавателя;
- знакомство с материалом предстоящей лекции по учебнику и дополнительной литературе.

Активная работа на лекции, ее конспектирование, продуманная, целенаправленная, систематическая, а главное - добросовестная и глубоко осознанная последующая работа над конспектом - важное условие успешного обучения студентов.

9.1. Методические указания для обучающихся по выполнению практических занятий

Практические занятия позволяют студенту более глубоко разобраться в теоретическом материале и определить сферы его практического применения. Основная цель практического занятия — развитие самостоятельности студента. Подготовка к практическим занятиям состоит в добросовестном анализе теоретического материала, составлении кратких справочников, словариков, схем, алгоритмов. Кроме того, все домашние задания к практическому занятию должны быть выполнены, либо подготовлены вопросы преподавателю, раскрывающие трудности в освоении учебного материала.

<u>Практическое занятие 1</u> Понятие о комплексных числах. Формы записи комплексного числа. Изображение комплексных чисел. Модуль и аргумент.

<u>Цель</u>: научиться изображать комплексные числа, находить модуль и аргумент.

Задание: найти модуль и аргумент, решить кубическое уравнение.

<u>Порядок выполнения:</u> 1) найти модуль. 2) найти аргумент. 3) изобразить комплексное число. 4) решить кубическое уравнение.

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1) Найти модуль и аргумент комплексного числа, его действительную и мнимую часть

и модуль и аргумент комплексного числа, его действительную
$$1. \ \frac{1+i}{2-i}$$
 $2. \ \frac{1-i}{2+i}$ $3. \ \frac{4-i}{1+i}$ $4. \ \frac{i+2}{2i+1}$ $5. \ \frac{3-i}{3i+2}$ $6. \ \frac{-i}{2+i}$ $7. \ \frac{4+i}{1+i}$ $8. \ \frac{i+2}{2i}$ $9. \ \frac{1-i}{2+2i}$ $10. \ \frac{4}{2+i}$ $11. \ \frac{4+3i}{2+i}$ $12. \ \frac{i+2}{4i+5}$ $13. \ \frac{1+i}{2-5i}$ $14. \ \frac{4-3i}{2+i}$ $15. \ \frac{4-i}{1+i}$ $16. \ \frac{i+2}{2i+1}$ $17. \ \frac{1+i}{2-i}$ $18. \ \frac{1-i}{2+i}$ $19. \ \frac{4-i}{1+i}$ $20. \ \frac{i-2}{2i+5}$

2) Решить кубическое уравнение.

$$x^{3} - 2x^{2} + 3x - 4 = 0$$
 $x^{3} - 6x^{2} + 10x - 4 = 0$ $x^{3} - 12x^{2} + 3x - 14 = 0$
 $x^{3} + 5x^{2} + 3x + 4 = 0$ $x^{3} - 9x^{2} + 3x - 24 = 0$ $x^{3} + 6x^{2} + 7x - 4 = 0$
 $x^{3} - 2x^{2} - 3x - 4 = 0$ $x^{3} - 2x^{2} + 3x - 4 = 0$ $x^{3} - 2x^{2} + 3x - 5 = 0$

Рекомендации по выполнению заданий и подготовке к практическому занятию:

Научиться находить действительную и мнимую часть комплексного числа. А также рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Письменный, Д. Т. Конспект лекций по высшей математике : полный курс / Д. Т. Письменный . - 10-е изд., испр. - М.: АЙРИС-ПРЕСС, 2011. - 608 с.

Дополнительная литература

- 1. Данко, П. Е. Высшая математика в упражнениях и задачах. В 2 ч. Ч.1 :учебное пособие для вузов / П. Е. Данко, А. Г. Попов, Т.Я. Кожевникова. 6-е изд. М.: "Оникс 21 век",: Высшая школа, 2003 304 с.
- 2. Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, Братск: БрГУ, 2010. 86 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок действий при вычислении модуля
- 2. Как изображать комплексное число.

<u>Практическое занятие 2.</u> Действия с комплексными числами. Извлечение корня из комплексного числа. Множества на комплексной плоскости.

Цель: научиться действовать с комплексными числами.

Задание. Применить формулу Муавра. Извлечь корень из комплексного числа. Нарисовать область.

Порядок выполнения:

1) найти все значения корня. 2) Изобразить область на комплексной плоскости. Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1) Возвести в степень.

1.
$$\frac{(1+i)^6}{(i-1)^8}$$

6.
$$\frac{(1-i)^{10}}{(i+1)^6}$$

11.
$$\frac{(1+i\sqrt{3})^6}{(i-1)^8}$$

1.
$$\frac{(1+i)^6}{(i-1)^8}$$
 6. $\frac{(1-i)^{10}}{(i+1)^6}$ 11. $\frac{(1+i\sqrt{3})^6}{(i-1)^8}$ 16. $\frac{(1-i)^6}{(i\sqrt{3}-1)^{10}}$

$$2. \ \frac{(3+i\sqrt{3})^6}{(i+1)^8}$$

7.
$$\frac{(1-i)^{16}}{(i+1)^8}$$

2.
$$\frac{(3+i\sqrt{3})^6}{(i+1)^8}$$
 7. $\frac{(1-i)^{16}}{(i+1)^8}$ 12. $\frac{(1+i\sqrt{3})^{10}}{(i+1)^7}$ 17. $\frac{(1+i\sqrt{3})^5}{(i-\sqrt{3})^8}$

17.
$$\frac{(1+i\sqrt{3})^5}{(i-\sqrt{3})^8}$$

3.
$$\frac{(\sqrt{3}+i)^4}{(i-1)^{18}}$$

8.
$$\frac{(1+i)^8}{(i-1)^4}$$

3.
$$\frac{(\sqrt{3}+i)^4}{(i-1)^{18}}$$
8. $\frac{(1+i)^8}{(i-1)^4}$
13. $\frac{(1+i\sqrt{3})^6}{(i+1)^8}$
18. $\frac{(1-i\sqrt{3})^{10}}{(i-\sqrt{3})^7}$
4. $\frac{(1+i\sqrt{3})^5}{(i+1)^4}$
9. $\frac{(\sqrt{3}+i)^{14}}{(i-1)^8}$
14. $\frac{(\sqrt{3}-i)^4}{(i-1)^{20}}$
19. $\frac{(\sqrt{3}-i)^4}{(i+1)^{10}}$

18.
$$\frac{(1-i\sqrt{3})^{10}}{(i-\sqrt{3})^7}$$

4.
$$\frac{(1+i\sqrt{3})^5}{(i+1)^4}$$

9.
$$\frac{(\sqrt{3}+i)^{1/2}}{(i-1)^8}$$

14.
$$\frac{(\sqrt{3}-i)^4}{(i-1)^{20}}$$

19.
$$\frac{(\sqrt{3}-i)^4}{(i+1)^{10}}$$

5.
$$\frac{(\sqrt{3}+3i)^4}{(i-1)^8}$$

5.
$$\frac{(\sqrt{3}+3i)^4}{(i-1)^8}$$
 10. $\frac{(3-i\sqrt{3})^{16}}{(i+1)^8}$ 15. $\frac{(3-i\sqrt{3})^6}{(i-1)^5}$ 20. $\frac{(3+i\sqrt{3})^4}{(i+1)^{18}}$

15.
$$\frac{(3-i\sqrt{3})}{(i-1)^5}$$

20.
$$\frac{(3+i\sqrt{3})^4}{(i+1)^{18}}$$

2) Найти все значения корня.

1.
$$\sqrt[4]{2}$$

6.
$$\sqrt[5]{i}$$

1.
$$\sqrt[4]{2}$$
 6. $\sqrt[5]{i}$ 11. $\sqrt[4]{-i}$

16.
$$\sqrt[4]{1-i}$$

2.
$$\sqrt[4]{-16}$$

3.
$$\sqrt[4]{1+i}$$

4.
$$\sqrt[3]{-2}$$

$$\sqrt[4]{i}$$
 10. $\sqrt[5]{i-1}$ 15. $\sqrt[5]{-1}$

2.
$$\sqrt[4]{-16}$$
 7. $\sqrt[6]{-1}$ 12. $\sqrt[5]{1}$ 17. $\sqrt[5]{32}$ 3. $\sqrt[4]{1+i}$ 8. $\sqrt[8]{1}$ 13. $\sqrt[8]{-1}$ 18. $\sqrt[4]{81}$ 4. $\sqrt[5]{-2}$ 9. $\sqrt[5]{1}$ 14. $\sqrt[6]{-64}$ 19. $\sqrt[5]{-i}$

19.
$$\sqrt[4]{-1}$$
20. $\sqrt[4]{-8}$

3) Изобразить множества на комплексной плоскости.

1. a)
$$|z+i| = |z-4|$$

B)
$$|z-1|+|z-5|<6$$

2. a)
$$|z+i| \le 5$$

B)
$$|z-1|-|z-7|<4$$

3. a)
$$1 \le \text{Re}(z+1) \le 3$$

B)
$$|z-2|+|z-8| < 8$$

4. a)
$$2 \le |z| \le 5$$

B)
$$|z+6|-|z+2| > 2$$

5. a)
$$|z-4| = |z-4i|$$

B)
$$|z+4|+|z-2|>10$$

6. a)
$$|z-2+i|=4$$

B)
$$|z+3|+|z-5|<10$$

7. a)
$$|z+3| = |z-i|$$

B)
$$|z-1|-|z-7|<4$$

8. a)
$$|z-1-i|=|z-4|$$

B)
$$|z+3|-|z-5| \le 6$$

9. a)
$$-1 \le \text{Im}(z+2i) \le 4$$

B)
$$|z+4|+|z-6| \le 12$$

10. a)
$$|z-i| = |z-1+i|$$

B)
$$|z-1|-|z-5|<2$$

11. a)
$$0 < \text{Re}(z - 4i) \le 4$$

B)
$$|z|-|z-6| > 4$$

12. a)
$$2 \le |z| \le 5$$

B)
$$|z+6|-|z+2| > 2$$

Рекомендации по выполнению заданий и подготовке к практическому занятию:

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Письменный, Д. Т. Конспект лекций по высшей математике: полный курс / Д. Т. Письменный . - 10-е изд., испр. - М.: АЙРИС-ПРЕСС, 2011. - 608 с.

Дополнительная литература

Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, - Братск: БрГУ, 2010. – 86 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок действий при вычислении корня?
- 2. Каков порядок действий при возведении в степень?

Практическое занятие 3. Действительная и мнимая части функции комплексного переменного.

Цель: научиться находить действительную и мнимую часть функции.

Задание: найти действительную и мнимую часть функции

Порядок выполнения:

- 1) выделить мнимую часть.
- 2) Выделить действительную часть.
- 3) Найти образ линии при заданной отображении

Форма отчетности: выполнить задание в тетради и показать преподавателю. Задания для самостоятельной работы:

Найти действительную и мнимую часть функции 1)

1. a)
$$w = \overline{z} - iz^2$$
 6. a) $w = z \cdot \sin z$ 11. a) $w = \overline{z} + iz^2$ 16. a) $w = \frac{z+1}{\overline{z}-2}$

B)
$$w = z \cdot \cos z$$
 B) $w = \frac{z+1}{z^2}$ B) $w = tgz$ B) $w = z \cdot e^{-z}$

$$\mathbf{B}) \quad w = tgz$$

$$\mathbf{B}) \ w = z \cdot e^{-z}$$

2. a)
$$w = \frac{\overline{z}}{z}$$

7. a)
$$w = z \cdot e^{z}$$

2. a)
$$w = \frac{\overline{z}}{z}$$
 7. a) $w = z \cdot e^z$ 12. a) $w = \frac{\overline{z} + 1}{z}$ 17. a) $w = tgz$

$$17. a) w = tgz$$

$$\mathbf{B}) \quad w = z^2 \cdot \sin z$$

B)
$$w = z^2 \cdot \sin z$$
 B) $w = \frac{z^2 + 1}{z - 2}$ B) $w = \frac{\cos z}{z}$ B) $w = \frac{z - 2}{z \cdot \overline{z}}$

$$\mathbf{B}) \quad w = \frac{\cos z}{z}$$

$$\mathbf{B}) \ w = \frac{z - 2}{z \cdot \overline{z}}$$

3. a)
$$w = \sin \overline{z}$$

$$8. a) \quad w = z \cdot \ln z$$

(a)
$$w = \frac{z + z}{z + 2}$$

3. a)
$$w = \sin \overline{z}$$
 8. a) $w = z \cdot \ln z$ 13. a) $w = \frac{z^2 + 1}{z + 2}$ 18. a) $w = \frac{\overline{z} + 1}{z - 2}$

B)
$$w = \frac{1+z}{z^2+1}$$

B)
$$w = \frac{1+z}{z^2+1}$$
 B) $w = z^3 \cdot (\overline{z}+1)$ B) $w = \frac{\ln z}{z}$ B) $w = 3^{z^2}$

$$\mathbf{B}) \quad w = \frac{\ln z}{z}$$

B)
$$w = 3^z$$

4. a)
$$w = 2$$

9. a)
$$w = \frac{z}{z+1}$$

4. a)
$$w = 2^{z^2 - 1}$$
 9. a) $w = \frac{z^2}{z + 1}$ 14. a) $w = (z + 1) \cdot e^z$ 19. a) $w = \frac{z + 2}{z \cdot \overline{z}}$

19. a)
$$w = \frac{z + z}{z \cdot \overline{z}}$$

B)
$$w = \frac{z^2 + 2}{z^2 - 1}$$
 B) $w = \overline{z} \cdot \sin z$ B) $w = \frac{\overline{z} + 1}{z}$ B) $w = z \cdot e^z$

$$\mathbf{B}) \quad w = \overline{z} \cdot \sin z$$

$$\mathbf{B}) \quad w = \frac{\overline{z} + 1}{z}$$

5. a)
$$w = \frac{2z+1}{z-1}$$
 10. a) $w = z^2 \cdot \overline{z}$ 15. a) $w = \frac{\overline{z}}{z}$ 20. a) $w = \frac{z^2}{z-2}$

B)
$$w = \frac{\sin z}{z}$$
 B) $w = ctgz$ B) $w = z \cdot \cos \overline{z}$ B) $w = z^2 \cdot \ln z$

B)
$$w = z^2 \cdot \ln z$$

- 2) Найти образ линии при заданной отображении
 - 1. Найти образ окружности $x^2 + y^2 = \frac{y}{3}$ при отображении $w = \frac{1}{3}$.
 - 2. Найти образ прямой $y = -\frac{x}{2}$ при отображении $w = \frac{1}{x}$.
 - 3. Найти образ прямой y = x 1 при отображении $w = \frac{1}{x}$.
 - 4. Найти образ окружности $x^2 + y^2 = 2y$ при отображении $w = \frac{1}{2}$.
 - 5. Найти образ прямой y = x при отображении $w = \frac{1}{x}$.
 - 6. Найти образ прямой y = x + 1 при отображении $w = \frac{1}{x}$.
 - 7. Найти образ окружности $x^2 + y^2 = 4x$ при отображении $w = \frac{1}{2}$.
 - 8. Найти образ прямой y = 4x при отображении $w = \frac{1}{x}$.

- 9. Найти образ прямой y = 2x 1 при отображении $w = \frac{1}{z}$.
- 10. Найти образ прямоугольной сетки x = C, y = C и образ окружности |z| = R при отображении $w = \frac{1}{z}$
- 11. Найти образы лучей $\arg z = \alpha$ и окружностей |z-1| = 1 при отображении $w = \frac{1}{z}$
- 12. Для отображений $w = \frac{1}{z} + z$ и $w = z \frac{1}{z}$ найти образы окружностей |z| = R
- 13. Найти преобразование прямоугольной сетки x = C, y = C с помощью функции $w = z^2 + z$
- 14. Найти преобразование прямоугольной сетки x = C, y = C с помощью функции $w = e^z$
- 15. Найти преобразование прямоугольной сетки x = C, y = C с помощью функции $w = e^{z^2}$
- 16. Найти образ окружности $x^2 + y^2 = 4x$ при отображении $w = \frac{1}{z}$.
- 17. Найти образ прямой y = -x при отображении $w = \frac{1}{z}$.
- 18. Найти образ прямой y = 3x 1 при отображении $w = \frac{1}{z}$.
- 19. Найти образ прямоугольной сетки x = C, y = C и образ окружности |z+1|=1 при отображении $w = \frac{1}{z}$
- 20. Найти образы лучей $\arg z = \alpha$ и окружностей |z-1| = 2 при отображении $w = \frac{1}{z}$

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Письменный, Д. Т. Конспект лекций по высшей математике : полный курс / Д. Т. Письменный . - 10-е изд., испр. - М.: АЙРИС-ПРЕСС, 2011. - 608 с.

Дополнительная литература

Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, - Братск: БрГУ, 2010. – 86 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок действий при нахождении мнимой части функции
- 2. Каков порядок действий при нахождении действительной части функции

Практическое занятие 4. Определения основных функций комплексного переменного.

Цель: научиться находить значения функций.

Задание: рассмотреть определения функций.

Порядок выполнения:

1) найти значения различных функций.

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

Вычислить значения функций

1. a)
$$cos(2+i)$$
 6. a) $sin 2i$ 11. a) $tg(2-i)$ 16. a) $ctg(1+i)$

B)
$$(-2)^{\sqrt{2}}$$

$$(-2)^{i}$$

$$(-1)^{-i}$$

B)
$$1^{\sqrt{2}}$$
 B) $(-2)^{\sqrt{2}}$ B) $(-2)^{i}$ B) $(-1)^{-i}$
2. a) $Ln4$ 7. a) $Ln(-1)$ 12. a) $Ln(2i)$ 17. a) $Ln(-2i)$

$$\frac{1}{8}$$
 Arc $\sin 0.5$

$$Arc\sin 2$$

B)
$$Arc \sin 0.5$$
 B) $Arc \sin 2$ B) $Arc \cos 1$ B) $Arc \cos (-2)$

3. a)
$$\left(\frac{1-i}{2}\right)^{1+i}$$
 8. a) $\left(\frac{1+i}{i}\right)^{i}$ 13. a) $\left(\frac{1-i}{1+i}\right)^{2i}$ 18. a) $\left(\frac{1+i}{2i}\right)^{\sqrt{2}}$

8. a)
$$\left(\frac{1+i}{i}\right)^i$$

13. a)
$$\left(\frac{1-i}{1+i}\right)^{2i}$$

18. a)
$$\left(\frac{1+i}{2i}\right)^{\sqrt{2}}$$

B)
$$Ln(2-3i)$$

B)
$$Ln(1+i)$$

B)
$$Ln(2+i)$$

B)
$$Ln(-4i)$$

4. a)
$$ch(1+i)$$

9. a)
$$sh(1-i)$$

a)
$$ch(-i)$$

19. a)
$$th(1-i)$$

B)
$$Arc\sin(-0.5)$$

B)
$$Ln(2-3i)$$
 B) $Ln(1+i)$ B) $Ln(2+i)$ B) $Ln(-4i)$ 4. a) $ch(1+i)$ 9. a) $sh(1-i)$ 14. a) $ch(-i)$ 19. a) $th(1-i)$ B) $Arc\sin(-0.5)$ B) $Arc\sin(-0.5)$ B) $Arc\sin(-0.5)$

B)
$$Arc\cos(-0.5)$$

B)
$$Arc\sin(-3i)$$

5. a)
$$Arch0.5$$
 10. a) $Arch(-0.5)$ 15. a) $Arsh0.5$ e^{2-3i} 20. a) $Arsh(-0.5)$ B) e^{2-3i} B

$$a^{2-3i}$$

B)
$$4^{2-3i}$$

B)
$$i^{2+3}$$

$$\mathbf{B}) i^2$$

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Письменный, Д. Т. Конспект лекций по высшей математике: полный курс / Д. Т. Письменный . - 10-е изд., испр. - М.: АЙРИС-ПРЕСС, 2011. - 608 с.

Дополнительная литература

Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, - Братск: БрГУ, 2010. – 86 с.

Контрольные вопросы для самопроверки

1. Каковы основные функции комплексного переменного

Практическое занятие 5. Условия Коши-Римана. Аналитические функции.

Восстановление аналитической функции по ее мнимой или действительной части. Гармонические функции.

Цель: научиться восстанавливать аналитическую функцию...

Задание:проверить условие Коши-Римана..

Порядок выполнения:

- 1) проверить условия Коши-Римана
- 2) восстановить саму функцию
- .Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1) Проверить, будут ли функции аналитическими

1.
$$f(z) = tgz$$

$$6. \quad f(z) = ctgz$$

11.
$$f(z) = \frac{z \cdot \cos z}{1 - z^2}$$

1.
$$f(z) = tgz$$
 6. $f(z) = ctgz$ 11. $f(z) = \frac{z \cdot \cos z}{1 - z^2}$ 16. $f(z) = \frac{\cos z}{\cos z - \sin z}$

$$2. \quad f(z) = z \cdot e^{-z}$$

2.
$$f(z) = z \cdot e^{-z}$$
 7. $f(z) = \frac{1}{tgz + ctgz}$ 12. $f(z) = z^2 \cdot e^{-z}$ 17. $f(z) = ctgz$

$$12. \quad f(z) = z^2 \cdot e^{-z}$$

17.
$$f(z) = ctgz$$

$$3. \quad f(z) = \frac{z \cdot \cos z}{1 + z^2}$$

8.
$$f(z) = cthz$$

13.
$$f(z) = \frac{e^z - 1}{e^z + 1}$$

3.
$$f(z) = \frac{z \cdot \cos z}{1 + z^2}$$
 8. $f(z) = cthz$ 13. $f(z) = \frac{e^z - 1}{e^z + 1}$ 18. $f(z) = (z + 1) \cdot e^{-z}$

4.
$$f(z) = \frac{e^z + 1}{e^z - 1}$$

4.
$$f(z) = \frac{e^z + 1}{e^z - 1}$$
 9. $f(z) = \frac{\cos z}{\cos z - \sin z}$ 14. $f(z) = \frac{e^z}{z - 1}$ 19. $f(z) = \frac{e^z}{e^z - 1}$

14.
$$f(z) = \frac{e^z}{z-1}$$

19.
$$f(z) = \frac{e^z}{e^z - 1}$$

$$5. f(z) = \frac{e^z}{z}$$

$$10. \ f(z) = thz$$

5.
$$f(z) = \frac{e^z}{z}$$
 10. $f(z) = thz$ 15. $f(z) = \frac{1}{tgz + ctgz}$ 20. $f(z) = thz$

2) Восстановить аналитическую функцию по ее действительной или мнимой части.

1.
$$u = \frac{x}{x^2 + y^2}$$
 $f(\pi) = \frac{1}{\pi}$

1.
$$u = \frac{x}{x^2 + y^2}$$
 $f(\pi) = \frac{1}{\pi}$ 2. $v = 2xy + 2y$ $f(i) = 2i - 1$

3.
$$u = 2\sin x \cdot chy - x$$
 $f(0) = 0$

3.
$$u = 2\sin x \cdot chy - x$$
 $f(0) = 0$ 4. $v = 2(chx\sin y - xy)$ $f(0) = 0$

$$5. \ v = 2(2shx\sin y + xy)$$

5.
$$v = 2(2shx \sin y + xy)$$
 $f(0) = 3$ 6. $v = arctg \frac{y}{x}$ $f(1) = 0$

7.
$$v = -2\sin 2x + y$$
 $f(0) = 2$

7.
$$v = -2\sin 2x + y$$
 $f(0) = 2$ 8. $v = 2\cos x + y - x^2 + y^2$ $f(0) = 2$

9.
$$u = \frac{x}{x^2 + y^2}$$
 $f(\pi) = \frac{1}{\pi}$

9.
$$u = \frac{x}{x^2 + y^2}$$
 $f(\pi) = \frac{1}{\pi}$ 10. $v = 2xy + 2y$ $f(i) = 2i - 1$

11.
$$v = 2xy + 2y$$

$$f(i) = i + 1$$

13.
$$u = x^3 - 3xy^3$$

$$f(1) = 2i + 1$$

13.
$$u = x^3 - 3xy^2$$
 $f(1) = 2i + 1$ 14. $u = \frac{x}{x^2 + y^2} - 2y$ $f(1) = i$

$$f(1) = i$$

15.
$$v = arctg \frac{y}{x}$$
 $f(1)$

15.
$$v = arctg \frac{y}{x}$$
 $f(1) = i$ 16. $v = 2(chx \sin y - xy)$ $f(0) = 0$

17.
$$u = 2\sin x \cdot chy - x$$
 $f(0)$

17.
$$u = 2\sin x \cdot chy - x$$
 $f(0) = 0$ 18. $v = -2\sin 2xsh2y + y$ $f(0) = 2$

19.
$$u = \frac{x}{x^2 + y^2}$$
 $f(\pi) = \frac{1}{\pi}$ 20. $v = 2e^x \cdot \sin y$ $f(i) = 2i$

$$20. \ v = 2e^x \cdot \sin y \qquad f(i) = 2i$$

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Письменный, Д. Т. Конспект лекций по высшей математике: полный курс / Д. Т. Письменный . - 10-е изд., испр. - М.: АЙРИС-ПРЕСС, 2011. - 608 с.

Дополнительная литература

Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, - Братск: БрГУ, 2010. – 86 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок проверки
- 2. Какие этапы восстановления

Практическое занятие 6. Геометрический смысл модуля и аргумента производной аналитической функции. Конформные отображения.

Цель: Изучить свойства конформных отображений.

Задание: выяснить геометрический смысл модуля и аргумента производной аналитической функции

Порядок выполнения:

- 1) найти производную
- 2) найти модуль и аргумент производной

. Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1) найти угол поворота и коэффициент растяжения

1.
$$w = z^3$$
, $z_0 = i + 3$

2.
$$w = z^4$$
, $z_0 = i + 3$

1.
$$w = z^3$$
, $z_0 = i + 3$ 2. $w = z^4$, $z_0 = i + 3$ 3. $w = \frac{z^4}{z^2 + 1}$, $z_0 = 2i$

4.
$$w = Lnz$$
, $z_0 = i - 1$

4.
$$w = Lnz$$
, $z_0 = i - 1$ 5. $w = \cos z$, $z_0 = \frac{i}{i - 1}$ 6. $w = tgz$, $z_0 = i$

6.
$$w = tgz$$
, $z_0 = t$

7.
$$w = \frac{z^3}{z^3}$$
, $z_0 = i$

8.
$$w = \sin z$$
, $z_0 = \frac{i}{i+2}$

7.
$$w = \frac{z^3}{z-1}$$
, $z_0 = i$ 8. $w = \sin z$, $z_0 = \frac{i}{i+2}$ 9. $w = Ln(z-1)$, $z_0 = i+3$

10.
$$w = z^2 + 1$$
, $z_0 = \frac{i+3}{i-1}$

11.
$$w = \frac{z+1}{z-1}$$
, $z_0 = i$

10.
$$w = z^2 + 1$$
, $z_0 = \frac{i+3}{i-1}$ 11. $w = \frac{z+1}{z-1}$, $z_0 = i$ 12. $w = \frac{z}{z^2 - 1}$, $z_0 = \frac{i}{i-1}$

13.
$$w = \frac{z^2}{z+1}$$
, $z_0 = \frac{i-1}{i}$ 14. $w = 2^z$, $z_0 = \frac{i+3}{i-2}$ 15. $w = \cos(z+2)$, $z_0 = 2-i$

14.
$$w = 2^z$$
, $z_0 = \frac{i+3}{i-2}$

15.
$$w = \cos(z+2)$$
, $z_0 = 2-i$

16.
$$w = z^4$$
, $z_0 = \frac{2i+3}{i-1}$

17.
$$w = z^4$$
, $z_0 = \frac{i+3}{i+2}$

16.
$$w = z^4$$
, $z_0 = \frac{2i+3}{i-1}$ 17. $w = z^4$, $z_0 = \frac{i+3}{i+2}$ 18. $w = ctg\left(\frac{1}{z}\right)$, $z_0 = i$

19.
$$w=1-z^3$$
, $z_0=\frac{i}{2-1}$ 20. $w=\frac{z}{\sin z}$, $z_0=i$

2) найти образ области при заданной отображении

1.
$$D = \{z \mid \text{Re } z > 0, \text{Im } z > 0\}; \quad w = \frac{z - i}{z + i}$$
 2. $D = \{z \mid 0 < \arg z < \frac{\pi}{4}\}; \quad w = \frac{z}{z - 1}$

2.
$$D = \left\{ z \mid 0 < \arg z < \frac{\pi}{4} \right\}; \quad w = \frac{z}{z - 1}$$

3.
$$D = \left\{ z \left| 1 \le \left| z \right| \le 2, 0 \le \arg z \le \frac{\pi}{4} \right\}; \quad w = 1 + \frac{1}{z} \quad 4. \ D = \left\{ z \left| \left| z \right| < 1, \operatorname{Im} z > 0 \right\}; \quad w = i \cdot \frac{1 - z}{1 + z} \right\}$$

4.
$$D = \{z | |z| < 1, \text{Im } z > 0\}; \quad w = i \cdot \frac{1-z}{1+z}$$

5.
$$D = \{z \mid 0 < \text{Re } z < 1\}; \quad w = \frac{z-1}{z-2}$$

6.
$$D = \{z | |z| < R, R < 1\}; \quad w = \frac{1}{2} \left(z + \frac{1}{z}\right)$$

7.
$$D = \{z | |z| > R, R > 1\}; \quad w = \frac{1}{2} \left(z + \frac{1}{z}\right)$$
 8. $D = \{z | -\pi < \text{Im } z < 0\}; \quad w = e^z$

8.
$$D = \{z \mid -\pi < \text{Im } z < 0\}; \quad w = e^{z}$$

9.
$$D = \left\{ z | |\text{Im } z| > \frac{\pi}{2} \right\}; \quad w = e^z$$

10.
$$D = \{z \mid 0 < \text{Im } z < 2\pi, \text{Re } z > 0\}; \quad w = e^z$$

11.
$$D = \left\{ z \mid 0 < \operatorname{Im} z < \frac{\pi}{2}, \operatorname{Re} z > 0 \right\}; \quad w = e^z$$
 12. $D = \left\{ z \mid 0 < \operatorname{Im} z < \pi, 0 < \operatorname{Re} z > 1 \right\}; \quad w = e^z$

12.
$$D = \{z \mid 0 < \text{Im } z < \pi, 0 < \text{Re } z > 1\}; \quad w = e^z$$

13.
$$D = \{z \mid \text{Re } z > 0, \text{Im } z > 0\}; \quad w = \frac{z - i}{z + i}$$

13.
$$D = \{z \mid \text{Re } z > 0, \text{Im } z > 0\}; \quad w = \frac{z - i}{z + i}$$
 14. $D = \{z \mid \text{Re } z > 0, \text{Im } z > 0\}; \quad w = \frac{z - 1}{z + 1}$

15.
$$D = \left\{ z \middle| 0 < \arg z < \frac{\pi}{4} \right\}; \quad w = \frac{z}{z+1}$$
 16. $D = \left\{ z \middle| |z| < 1, \operatorname{Im} z > 0 \right\}; \quad w = i \cdot \frac{2-z}{2+z}$

16.
$$D = \{z | |z| < 1, \text{Im } z > 0\}; \quad w = i \cdot \frac{2-z}{2+z}$$

17.
$$D = \{z \mid 0 < \text{Re } z < 1\}; \quad w = \frac{z - i}{z + i}$$
 18. $D = \{z \mid |z| > 3\}; \quad w = \frac{1}{2} \left(z + \frac{1}{z}\right)$

18.
$$D = \{z | |z| > 3\}; \quad w = \frac{1}{2} \left(z + \frac{1}{z}\right)$$

19.
$$D = \{z | |\text{Im } z| > \pi \}; \quad w = e^z$$

20.
$$D = \{z \mid 0 < \arg z < \pi\}; \quad w = \frac{z}{z+1}$$

Рекомендации по выполнению заданий и подготовке к практическому занятию:

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Письменный, Д. Т. Конспект лекций по высшей математике: полный курс / Д. Т. Письменный . - 10-е изд., испр. - М.: АЙРИС-ПРЕСС, 2011. - 608 с.

Дополнительная литература

Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, - Братск: БрГУ, 2010. – 86 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок проверки
- 2. Какие этапы восстановления

<u>Практическое занятие 7.</u> Определение интеграла от комплексной переменной. Независимость интеграла от аналитической функции от пути интегрирования.

Цель: Рассмотреть интеграл от комплексной переменной

Задание: Проверить независимость интеграла от пути интегрирования.

Порядок выполнения:

- 1) вычислить интеграл непосредственно
- 2) проверить по формуле Ньютона-Лейбница

<u>Форма отчетности</u>: выполнить задание в тетради и показать преподавателю. Задания для самостоятельной работы:

- 1) вычислить интегралы по заданным контурам
- 1. Вычислить интеграл $\int\limits_{\gamma}^{\infty}e^{z}dz$ по дуге параболы $y=x^{2}$, соединяющей точки $z_{1}=0$ и $z_{2}=1+i$
- 2. Вычислить интеграл $\int_{\gamma} \cos z dz$ по отрезку прямой, соединяющей точки $z_1 = \frac{\pi}{2}$ и $z_2 = \pi + i$
- 3. Вычислить интеграл $\int\limits_{\gamma}e^{z}dz$ по отрезку прямой, соединяющей точки $z_{1}=i$ и $z_{2}=2-i$
- 4. Вычислить интеграл $\int_{\gamma} \frac{1+tgz}{\cos^2 z} dz$ по отрезку прямой, соединяющей точки $z_1 = 1$ и $z_2 = i$
- 5. Вычислить интеграл $\int_{\gamma} \sin z dz$ по отрезку прямой, соединяющей точки $z_1 = \frac{\pi}{2}$ и $z_2 = \pi + i$
- 6. Вычислить интеграл $\int_{\gamma} e^{-z} dz$ по дуге параболы $y=2x^2$, соединяющей точки $z_1=0$ и $z_2=2+8i$
- 7. Вычислить интеграл $\int_{\gamma} \frac{1+tgz}{\cos^2 z} dz$ по отрезку прямой, соединяющей точки $z_1 = i$ и $z_2 = 2i$
- 8. 9. Вычислить интеграл $\int (1+i-2\overline{z})dz$ по дуге параболы $y=x^2$, соединяющей точки $z_1=0$ и $z_2=1+i$
- 10. Вычислить интеграл $\int (1+i-2\overline{z})dz$ по ломаной $z_1z_2z_3$, где $z_1=0$, $z_2=1+i$, $z_2=2+3i$
- 11. Вычислить интеграл $\int_{\gamma} \frac{1}{\sqrt{z}} dz$ по дуге $|z| = 1, 0 \le \arg z \le \pi$ (выбирается та ветвь функции

 \sqrt{z} , для которой $\sqrt{1} = 1$

12. Вычислить интеграл $\int_{\gamma} \frac{1}{\sqrt{z}} dz$ по дуге $|z| = 1, 0 \le \arg z \le \pi$ (выбирается та ветвь функции

 \sqrt{z} , для которой $\sqrt{1} = -1$)

- 13. Вычислить интеграл $\int_{\gamma} \frac{z}{\overline{z}} dz$ по дуге $|z| = 1, 0 \le \arg z \le \pi$
- 14. Вычислить интеграл $\int\limits_{\gamma} |z| \, \overline{z} \, dz$ по контуру, состоящему из дуги $|z| = 1, \, 0 \le \arg z \le \pi$ и отрезка $-1 \le x \le 1$
- 15. Вычислить интеграл $\int_{\gamma} |z| \overline{z} dz$ по контуру, состоящему из дуги $|z| = 1, 0 \le \arg z \le \frac{\pi}{4}$ и отрезков $-1 \le x \le 1, -1 \le y \le 1$

16. Вычислить интеграл $\int_{\gamma} Lnzdz$ по окружности |z|=1 (выбирается та ветвь функции Lnz, для которой Ln1=0)

17. Вычислить интеграл $\int_{\gamma} Lnzdz$ по окружности |z|=1 (выбирается та ветвь функции Lnz,

для которой $Lni = \frac{\pi i}{2}$)

18. Вычислить интеграл $\int\limits_{\gamma} Lnzdz$ по окружности |z|=R (выбирается та ветвь функции Lnz , для которой $LnR=\ln R$)

20. Вычислить интеграл $\int_{\gamma} \frac{1}{\sqrt[3]{z}} dz$ по дуге $|z|=1, 0 \le \arg z \le \pi$ (выбирается та ветвь функции

 \sqrt{z} , для которой $\sqrt[3]{1} = 1$)

Рекомендации по выполнению заданий и подготовке к практическому занятию:

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Письменный, Д. Т. Конспект лекций по высшей математике: полный курс / Д. Т. Письменный. - 10-е изд., испр. - М.: АЙРИС-ПРЕСС, 2011. - 608 с.

Дополнительная литература

Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, - Братск: БрГУ, 2010. – 86 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок проверки
- 2. Какие этапы восстановления

<u>Практическое занятие 8.</u> Теорема Коши. Интегральная формула Коши. Интегральная формула Коши для многосвязной области.

Цель: научиться применять теорему Коши и интегральную формулу

Задание: найти интегралы

Порядок выполнения:

1) применит интегральную формулу Коши для многосвязной области Форма отчетности: выполнить задание в тетради и показать преподавателю. Задания для самостоятельной работы: 1) Найти интегралы, применяя формулу Коши

1.
$$\int_{|z|=1}^{\infty} \frac{e^{z} dz}{z^{2} + 2z}$$
 6.
$$\int_{|z|=2}^{\infty} \frac{zshz}{\left(z^{2} - 1\right)^{2}} dz$$
 11.
$$\int_{|z|=2}^{\infty} \frac{1}{z^{3}} \cos \frac{\pi}{z+1} dz$$
 16.
$$\int_{|z|=2}^{\infty} \frac{1}{(z-1)^{3}(z+1)^{3}} dz$$

2.
$$\int_{|z-i|=1}^{\infty} \frac{e^{iz}dz}{z^2+1}$$
 7.
$$\int_{|z|=0.5}^{\infty} \frac{1-\sin zdz}{z^2}$$
 12.
$$\int_{|z|=0.5}^{\infty} \frac{1}{z^3} \sin \frac{\pi}{z+1} dz$$
 17.
$$\int_{|z|=2}^{\infty} \frac{1}{(z-i)^3(z+1)^3} dz$$

3.
$$\int_{|z|=1} \frac{\cos z dz}{z^3}$$
 8.
$$\int_{|z+i|=1} \frac{e^{-iz} dz}{z^2 + 1}$$
 13.
$$\int_{|z|=2} z^2 ln \frac{z+1}{z-1}$$
 18.
$$\int_{|z-2i|=3} \frac{\sin z dz}{z^3}$$

4.
$$\int_{|z|=1} \frac{e^z dz}{z^2 - 3z}$$
 9.
$$\int_{|z|=1} \frac{\cos z dz}{z^3}$$
 14.
$$\int_{|z-1|=1} z^2 ln \frac{z+1}{z-1}$$
 19.
$$\int_{|z-i|=4} \frac{\cos \frac{iz\pi}{3} dz}{z^2 + 4}$$

5.
$$\int_{|z|=0.5} \frac{1}{z^3} \cos \frac{\pi}{z+1} dz = 10. \int_{|z+1|=2} \frac{1+\sin z dz}{z^2} = 15. \int_{|z-i|=1} \frac{\sin \frac{iz\pi}{2} dz}{z^2+1} = 20. \int_{|z|=0.5} \frac{1}{z^2} \cos \frac{\pi}{z^2+1} dz$$

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Письменный, Д. Т. Конспект лекций по высшей математике: полный курс / Д. Т. Письменный . - 10-е изд., испр. - М.: АЙРИС-ПРЕСС, 2011. - 608 с.

Дополнительная литература

Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, - Братск: БрГУ, 2010. – 86 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок проверки
- 2. Какие формулы для многосвязной области

Практическое занятие 9. Ряд Тейлора. Основные разложения в степенной ряд.

Цель: Изучить различные разложения функций

Задание: Разложить в ряд Тейлора указанные функции

Порядок выполнения:

- 1) Применить нужное разложение.
- 2) Найти область сходимости

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1) Найти области абсолютной сходимости степенных рядов

$$1. \sum e^{in} z^n$$

1.
$$\sum e^{in} z^n$$
 6. $\sum \frac{(z+1)^n}{n \cdot 2^n \sqrt{2n+1}}$ 11. $\sum \frac{n^2 z^n}{n!}$ 16. $\sum \frac{n!}{n^n} z^n$

$$11. \sum \frac{n^2 z^n}{n!}$$

$$16. \sum \frac{n!}{n^n} z^n$$

2.
$$\sum \left(\frac{z}{in}\right)^{i}$$

7.
$$\sum (-1)^n \frac{(z+2)^{2n}}{n}$$

12.
$$\sum n!(z-i)'$$

$$17. \sum \frac{(z+3)^n}{n\sqrt{n}}$$

$$3. \sum \sin \frac{\pi i}{n} z^n$$

8.
$$\sum \frac{2^n(z-2)^2}{n}$$

2.
$$\sum \left(\frac{z}{in}\right)^n$$
 7. $\sum (-1)^n \frac{(z+2)^{2n}}{n}$ 12. $\sum n!(z-i)^n$ 17. $\sum \frac{(z+3)^n}{n\sqrt{n}}$ 3. $\sum \sin \frac{\pi i}{n} z^n$ 8. $\sum \frac{2^n (z-2)^{2n}}{n}$ 13. $\sum (3n+1)(z-1)^n$ 18. $\sum \frac{n^n (z-5)^n}{(3n+1)^{10}}$

$$-n = n - (3n+1)^{n}$$

$$4. \sum_{n=0}^{\infty} \cos^{n} \frac{\pi i}{\sqrt{n}} z^{n} = 9. \sum_{n=0}^{\infty} (-1)^{n} \frac{(z-3)^{2n}}{(n+1)\sqrt{\ln(n+1)}} = 14. \sum_{n=0}^{\infty} \frac{(z+i)^{n}}{n^{n}} = 19. \sum_{n=0}^{\infty} (-1)^{n+1} n z^{n}$$

5.
$$\sum \cos i n \cdot z^n$$

5.
$$\sum \cos i n \cdot z^n = 10. \sum (-1)^n \frac{nz^n}{3n-2}$$

15.
$$\sum \frac{(2n+1)z^n}{n!}$$
 20. $\sum \frac{(z-i)^n}{z^n}$

$$20. \sum_{n} \frac{(z-i)^n}{n^n}$$

2) Разложить указанные функции в ряд Тейлора

1.
$$f(z) = \sqrt[3]{27 - z}$$
, $z_0 = 0$

$$f(z) = \frac{z}{4+z^2}, \quad z_0 =$$

1.
$$f(z) = \sqrt[3]{27 - z}$$
, $z_0 = 0$ 2. $f(z) = \frac{z}{4 + z^2}$, $z_0 = 0$ 3. $f(z) = \frac{1}{\sqrt{9 + z^2}}$, $z_0 = 0$

$$\frac{1}{4+z^2}, \quad \frac{1}{2} = \frac{1}{4+z^2}, \quad \frac{1}{2} = \frac{1}{4+z^2}$$

4.
$$f(z) = \frac{3}{1+z-2z^2}$$
, $z_0 = 0$ 5. $f(z) = \ln(1+z-2z^2)$, $z_0 = 0$ 6. $f(z) = \frac{z}{3+4z^2}$, $z_0 = 0$

7.
$$f(z) = \ln(z^2 + 3z + 2)$$
, $z_0 = 0$ 8. $f(z) = \ln(z + \sqrt{1 + z^2})$, $z_0 = 0$ 9. $f(z) = \frac{3z + 1}{(z - 2)^2}$, $z_0 = 0$

10.
$$f(z) = \frac{1}{1-z}$$
, $z_0 = 2$ 11. $f(z) = \frac{1}{z^2 - 6z + 5}$, $z_0 = 3$ 12. $f(z) = \frac{1}{z^2 + 3z + 2}$, $z_0 = -4$

12.
$$f(z) = \frac{1}{z^2 + 3z + 2}, z_0 = -4$$

13.
$$f(z) = \frac{1}{1+z}$$
, $z_0 = 3i$ 14. $f(z) = \sqrt{z}$, $z_0 = 1$ 15. $f(z) = \frac{1}{z^2}$, $z_0 = 2$

14.
$$f(z) = \sqrt{z}$$
, $z_0 = 1$

15.
$$f(z) = \frac{1}{z^2}$$
, $z_0 = 2$

16.
$$f(z) = e^{z^2 - 4z + 1}$$
, $z_0 = 2$ 7. $f(z) = z \cdot e^{2z - z^2}$, $z_0 = 1$ 18. $f(z) = \sin(z^2 + 4z)$, $z_0 = -2$ 19. $f(z) = \ln(5z + 3)$, $z_0 = 1$ 20. $f(z) = \ln(z^2 + 6z + 12)$, $z_0 = -3$

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Письменный, Д. Т. Конспект лекций по высшей математике : полный курс / Д. Т. Письменный . - 10-е изд., испр. - М.: АЙРИС-ПРЕСС, 2011. - 608 с.

Дополнительная литература

Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, - Братск: БрГУ, 2010. – 86 с.

Контрольные вопросы для самопроверки

- 1. Каков основные разложения
- 2. Какие формулы для области сходимости

<u>Практическое занятие 10.</u> Ряд Лорана. Классификация особых точек функции по виду ряда Лорана.

<u>Цель</u>: Провести классификацию особых точек по виду ряда Лорана

Задание: Установить характер особых точек

Порядок выполнения:

- 1) Найти нули функции.
- 2)Разложить в ряд Лорана

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1) Найти нули функции и установить их порядок

1.
$$f(z) = \frac{1+z^4}{z^4}$$
 2. $f(z) = \frac{(1+z^2)^3}{z^4}$ 3. $f(z) = \frac{2-e^z}{z^3}$ 4. $f(z) = \frac{\arctan tgz^2}{z^3-1}$

5.
$$f(z) = \frac{(1+z^2)^2}{z^4}$$
 6. $f(z) = \frac{(1+z^2)(1-2z)}{z^4+2}$ 7. $f(z) = \frac{(1+z^3)^2}{z^4}$ 8. $f(z) = \sin\frac{1}{z}$

9.
$$f(z) = \frac{1 - e^z}{z^4}$$
 10. $f(z) = \frac{z^4}{z - \sin z}$ 11. $f(z) = e^{\frac{z}{1 + z}}$ 12. $f(z) = \sin^2 \frac{1}{z}$

13.
$$f(z) = \frac{1+e^z}{z^4}$$
 14. $f(z) = \frac{z^2}{z+\sin z}$ 15. $f(z) = \frac{z^4}{z-\sin z}$ 16. $f(z) = \frac{1+e^z}{z^4+1}$

17.
$$f(z) = e^{\frac{z}{1-z}}$$
 18. $f(z) = \frac{\arcsin z^2}{z^4 - 1}$ 19. $f(z) = \frac{z^3}{z + tgz}$ 20. $f(z) = \frac{\left(1 - z^4\right)^2}{z^4}$

2) Найти особые точки функций, выяснить их характер и исследовать поведение функции на бесконечности.

1.
$$f(z) = \frac{1}{z - z^3}$$
 2. $f(z) = \frac{z^4}{1 + z^4}$ 3. $f(z) = \frac{z^5}{(1 - z)^2}$ 4. $f(z) = \frac{1}{z(z^2 + 4)^2}$

5.
$$f(z) = \frac{e^z}{1+z^2}$$
 6. $f(z) = \frac{1}{e^z - 1} - \frac{1}{z}$ 7. $f(z) = e^{\frac{z}{1-z}}$ 8. $f(z) = \frac{1 - e^z}{1 + e^z}$

9.
$$f(z) = \frac{e^z}{z(1 - e^{-z})}$$
 10. $f(z) = e^{-\frac{1}{z^2}}$ 11. $f(z) = e^{\frac{z}{1+z}}$ 12. $f(z) = \frac{1}{\sin z}$

13.
$$f(z) = \frac{\cos z}{z^4}$$
 14. $f(z) = \frac{1}{(z^2 + i)^3}$ 15. $f(z) = tg^2 z$ 16. $f(z) = e^{\frac{1}{z^{-3}i}}$

17.
$$f(z) = \frac{\sin z}{z^5}$$
 18. $f(z) = \frac{1 - \cos z}{z^2}$ 19. $f(z) = \frac{1}{e^z - 3}$ 20. $f(z) = \frac{3z^5 - 5z + 2}{z^2 + z - 4}$

3) Найти все разложения функций в ряды Лорана по степеням $z-z_0$ и установить области сходимости полученных разложений.

1.
$$\frac{1}{z^2(z-1)}$$
, $z_0 = 1$ 2. $\frac{1}{z(z-2)^2}$, $z_0 = 2$ 3. $\frac{1}{z^2(z-1)}$, $z_0 = 0$ 4. $\frac{z}{(z^2+1)^2}$, $z_0 = -i$

5.
$$\frac{1}{z^2(z-1)}$$
, $z_0 = 0$ 6. $\frac{1}{z(z^2+1)}$, $z_0 = 0$ 7. $\frac{1}{z(z-2)^2}$, $z_0 = 0$ 8. $\frac{1}{(z^2-4)^2}$, $z_0 = 0$

9.
$$\frac{1}{(z+2)(z-1)}$$
, $z_0 = -2$ 10. $\frac{2z+3}{z^2+3z+2}$, $z_0 = -1$ 11. $\frac{1}{(z^2-4)^2}$, $z_0 = 2$ 12. $\frac{2}{z(z-2)^2}$, $z_0 = 0$

13.
$$\frac{1}{(z+2)(z-1)}$$
, $z_0 = 1$ 14. $\frac{z}{(z^2+1)^2}$, $z_0 = 0$ 15. $\frac{z}{(z^2-1)^2}$, $z_0 = 0$ 16. $\frac{2}{z(z^2+1)}$, $z_0 = i$

17.
$$\frac{z}{(z^2+1)^2}$$
, $z_0 = i$ 18. $\frac{1}{z(z^2+1)}$, $z_0 = -i$ 19. $\frac{2z+3}{z^2+3z+2}$, $z_0 = 0$ 20. $\frac{1}{(z+2)(z-1)}$, $z_0 = 0$

Рекомендации по выполнению заданий и подготовке к практическому занятию:

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Письменный, Д. Т. Конспект лекций по высшей математике : полный курс / Д. Т. Письменный . - 10-е изд., испр. - М.: АЙРИС-ПРЕСС, 2011. - 608 с.

Дополнительная литература

Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, - Братск: БрГУ, 2010. – 86 с.

Контрольные вопросы для самопроверки

- 1. Каковы основные разложения
- 2. Какие формулы для области сходимости

<u>Практическое занятие 11.</u> Вычет функции. Нахождение вычета в полюсе функции и в существенно особой точке. Основная теорема о вычетах. Вторая теорема о вычетах.

<u> Цель</u>: Рассмотреть первую и вторую теорему о вычетх

Задание: Найти все вычеты функции

Порядок выполнения:

- 1) Найти вычет по формуле
- 2) Разложить в ряд Лорана и найти вычет

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1) Найти вычеты функций относительно каждого из ее конечных полюсов

1.
$$\frac{z^2 + 1}{(z - 2)^2(z + 3)}$$
 2. $\frac{z^2}{(z^2 + 1)^2}$ 3. $\frac{\sin 2z}{(z + 1)^4}$ 4. $\frac{e^z}{(z + 1)(z - 2)^2}$
5. $\frac{z^2 + z - 1}{z^2(z - 1)}$ 6. ctg^2z 7. $\frac{1}{z^2 - z^5}$ 8. $\frac{\cos 4z}{(z - 2)^5}$
9. $\frac{\cos^3 2z}{z^2}$ 10. $\frac{1}{z^4 + z^2}$ 11. $\frac{1}{z^2 - z^5}$ 12. $\frac{z^2 + 3}{z^2 + 1}$ 13. $\frac{\cos 2z}{z^2}$

14.
$$\frac{1}{z^4+z^2}$$
15. $\frac{z^4+z}{z^6-1}$ 16. $z \cdot \cos^2 \frac{\pi}{z}$ 17. $\frac{z^2}{z-1} \cdot \sin \frac{1}{z}$ 18. $z \cdot \cos^2 \frac{\pi}{z^3}$ 2) Используя теоремы о вычетах, вычислить интегралы.

1.
$$\int_C \frac{dz}{z^4 + 1}$$
 $C = \{z | |z - 1| = 1\}$ 2. $\int_C \frac{dz}{z^4 + 1}$ $C = \{z | |z + 1| = 1\}$

$$3. \int_{C} \frac{dz}{z(z^{4}-1)} \quad C = \left\{ z \mid |z-1| = 1,5 \right\} \quad 4. \int_{C} \frac{dz}{z^{8}+1} \quad C = \left\{ z \mid |z| = 2 \right\}$$

$$5. \int_{C} \frac{dz}{(z+1)(z-2)} \quad C = \left\{ z \mid |z+i| = 2 \right\} \quad 6. \int_{C} \frac{dz}{(z^{9}+1)(z-2)} \quad C = \left\{ z \mid |z-2| = 0,5 \right\}$$

$$7. \int_{C} \frac{dz}{(z^{7}-1)(z-2)^{2}} \quad C = \left\{ z \mid |z-2| = 0,5 \right\} \quad 8. \int_{C} \frac{dz}{z^{5}+1} \quad C = \left\{ z \mid |z-1| = 1 \right\}$$

$$9. \int_{C} \frac{e^{z}dz}{(z-2)(z^{4}+1)} \quad C = \left\{ z \mid |z-2| = 0,5 \right\} \quad 10. \int_{C} \frac{dz}{z(z^{8}+1)} \quad C = \left\{ z \mid |z| = 2 \right\}$$

$$11. \int_{C} \frac{\sin zdz}{z^{2}+9} \quad C = \left\{ z \mid |z| = 4 \right\} \qquad 12. \int_{C} \sin \frac{1}{z^{3}} dz \quad C = \left\{ z \mid |z| = 2 \right\}$$

$$13. \int_{C} \frac{1}{z^{2}} e^{\frac{2}{z^{-4}}} dz \quad C = \left\{ z \mid |z| = 5 \right\} \qquad 14. \int_{C} \frac{dz}{(z+1)^{2}(z-2)} \quad C = \left\{ z \mid |z-i| = 2 \right\}$$

$$15. \int_{C} \frac{z+1}{e^{z}+1} \quad C = \left\{ z \mid |z| = 4 \right\} \qquad 16. \int_{C} \frac{tgzdz}{z^{2}+4} \quad C = \left\{ z \mid |z+i| = 5 \right\}$$

$$17. \int_{C} \frac{\cos zdz}{(z^{2}+9)^{2}} \quad C = \left\{ z \mid |z+3i| = 1 \right\} \qquad 18. \int_{C} \frac{dz}{z(z^{6}-1)} \quad C = \left\{ z \mid |z| = 2 \right\}$$

$$19. \int_{C} \frac{1}{z} \cdot e^{\frac{2}{z+4}} dz \quad C = \left\{ z \mid |z| = 5 \right\} \qquad 20. \int_{C} \frac{dz}{z^{5}+32} \quad C = \left\{ z \mid |z| = 3 \right\}$$

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Письменный, Д. Т. Конспект лекций по высшей математике : полный курс / Д. Т. Письменный . - 10-е изд., испр. - М.: АЙРИС-ПРЕСС, 2011. - 608 с.

Дополнительная литература

Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, - Братск: БрГУ, 2010. – 86 с.

Контрольные вопросы для самопроверки

- 1. Каков основные разложения
- 2. Какие формулы для области сходимости

<u>Практическое занятие 12.</u> Вычисление определенных интегралов с помощью теоремы о вычетах. Вычисление определенных интегралов с помощью комплексной замены.

<u>Цель</u>: Рассмотреть применение вычетов

Задание: Вычислить определенные интегралы

<u>Порядок выполнения:</u> 1) Вычислить с помощью теоремы о вычетах. 2) Вычислить с помощью замены.

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы: 1) Вычислить интегралы

1.
$$\int_{-\infty}^{\infty} \frac{dx}{(x^{2}+1)^{3}}$$
2.
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^{6}}$$
3.
$$\int_{-\infty}^{\infty} \frac{dx}{(x^{2}+2x+2)^{2}}$$
4.
$$\int_{-\infty}^{\infty} \frac{Cosxdx}{x^{2}+9}$$
5.
$$\int_{-\infty}^{\infty} \frac{x^{2}Cosxdx}{(x^{2}+1)^{2}}$$
6.
$$\int_{-\infty}^{\infty} \frac{x^{3}Sinxdx}{(x^{2}+1)^{2}}$$
7.
$$\int_{-\infty}^{\infty} \frac{Cos2x-Cos3x}{x^{2}}dx$$
8.
$$\int_{-\infty}^{\infty} \frac{dx}{2+x^{6}}$$
9.
$$\int_{-\infty}^{\infty} \frac{x^{3}Cosxdx}{(x^{2}+1)^{2}}$$
10.
$$\int_{-\infty}^{\infty} \frac{Cosxdx}{x^{2}+25}$$
11.
$$\int_{-\infty}^{\infty} \frac{dx}{(x^{2}+4)^{4}}$$
12.
$$\int_{-\infty}^{\infty} \frac{dx}{(x^{2}+2x+4)^{2}}$$

13.
$$\int_{-\infty}^{\infty} \frac{x^2 Cosx dx}{(x^2 + 4)^2}$$
 14.
$$\int_{-\infty}^{\infty} \frac{x^3 Sinx dx}{(x^2 + 4)^2}$$
 15.
$$\int_{-\infty}^{\infty} \frac{Cos6x - Cos3x}{x^2} dx$$
 16.
$$\int_{-\infty}^{\infty} \frac{dx}{5 + x^7}$$
 17.
$$\int_{-\infty}^{\infty} \frac{Cos4x - Cos3x}{x^2} dx$$
 18.
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + 4)^5}$$
 19.
$$\int_{-\infty}^{\infty} \frac{Cosx dx}{x^2 + 16}$$
 20.
$$\int_{-\infty}^{\infty} \frac{x^3 Cosx dx}{(x^2 - 1)^2}$$

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Письменный, Д. Т. Конспект лекций по высшей математике : полный курс / Д. Т. Письменный . - 10-е изд., испр. - М.: АЙРИС-ПРЕСС, 2011. - 608 с.

Дополнительная литература

Багинова, Т.Г. Математика. Теория функций комплексной переменной: методические указания/ Т.Г. Багинова, Р.С. Бекирова, К.Г. Саакян, - Братск: БрГУ, 2010. – 86 с.

Контрольные вопросы для самопроверки

- 1. Каковы основные теоремы о вычетах
- 2. Какие приемы вычисления

9.2. Методические указания по выполнению контрольной работы

Контрольные работы представляют собой способ проверки знаний студента, его умений и предполагают письменные ответы на поставленные вопросы, либо самостоятельное выполнение практических заданий. Подготовка к контрольным работам состоит в ответственном выполнении всех домашних заданий по дисциплине и самостоятельной проработке основной и дополнительной литературы, а так же рекомендуемых источников.

Наиболее продуктивной является самостоятельная работа в библиотеке, где доступны основные и дополнительные печатные и электронные источники.

При выполнении приведенных выше рекомендаций подготовка к зачету и экзамену сведется к повторению изученного и совершенствованию навыков применения теоретических положений и различных методов решения к стандартным и нестандартным заданиям.

10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

- Microsoft Imagine Premium
- OC Windows 7 Professional
- Microsoft Office 2007 Russian Academic OPEN No Level
- Kaspersky Security

11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Вид занятия (Лк, ПЗ, СР)	Наименование аудитории	Перечень основного обо- рудования	№ Лк , ПЗ
1	2	3	4
Лк	Лекционная аудитория	-	NoNo 1-12
П3	Лекционная аудитория	-	NoNo 1-12
кр	Лекционная аудитория	-	
СР	ЧЗ №1	оборудование 10-ПК i5- 2500/H67/4Gb (монитор TFT19 Samsung); принтер HP LaserJet P2055D	-

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

1. Описание фонда оценочных средств (паспорт)

No	Элемент	Раздел	Тема	ФОС
компетенции	компетенции	т аздел	1 cma	Ψυυ
ОПК-1	использовать базовые знания естественных		1.1. Понятие о комплексных числах. Формы записи комплексного числа. Изображение комплексных чисел. Моруль и аргумент.	Экзаменационный вопрос 1.1
	наук, математики и информатики, основные факты, концепции, принципы теорий, связанных с прикладной математикой и информатикой ОПК-2 способностью приобретать новые научные и профессиональные знания, используя современные образовательные и информационные технологии	1. Комплексные числа и множества на комплексной плоскости.	1.2. Действия с комплексными числами. Извлечение корня из комплексного числа. Множества на комплексной плоскости.	Экзаменационный вопрос 1.2
		2. Функции комплексного переменного	2.1. Действительная и мнимая части функции комплексного переменного. 2.2. Определения основных функций	Экзаменационный вопрос 2.1. Экзаменационный
ОПК-2			комплексного переменного. 2.3. Условия Коши-Римана. Аналитические функции. Восстановление аналитической функции по ее мнимой или действительной части. Гармонические функции.	вопрос 2.2. Экзаменационный вопрос 2.3.
			2.4. Геометрический смысл модуля и аргумента производной аналитической функции. Конформные отображения.	Экзаменационный вопрос 2.4.
		3. Интеграл от функции комплексной переменной	3.1. Определение интеграла от комплексной переменной. Независимость интеграла от аналитической функции от пути интегрирования.	Экзаменационный вопрос 3.1.
ПК-2	пк-2 способностью понимать, совершенствовать и применять современный математический аппарат	3. Инт фун компл перем	3.2. Теорема Коши. Интегральная формула Коши. Интегральная формула Коши для многосвязной области.	Экзаменационный вопрос 3.2.
		. Ряды Тейлора. Ряды Лорана	4.1. Ряд Тейлора. Основные разложения в степенной ряд.	Экзаменационный вопрос 4.1.
	4. Ряды Ряды	4.2. Ряд Лорана. Классификация особых точек функции по виду ряда Лорана.	Экзаменационный вопрос 4.2.	
	5. Вычеты. Основная теорема о вычетах	Основная	5.1. Вычет функции. Нахождение вычета в полюсе функции и в существенно особой точке. Основная теорема о вычетах. Вторая теорема о вычетах.	. Экзаменационный вопрос 5.1.
		5.2. Вычисление определенных интегралов с помощью теоремы о вычетах. Вычисление определенных интегралов с помощью комплексной замены.	Экзаменационный вопрос 5.2.	

2. Экзаменационные вопросы

№	Компетенции			№	
п/п	Код	Определение	ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ	и наименование раздела	
1	2	3	4	5	
1.	ОПК-1	способностью использовать базовые знания естественных наук, математики и информатики, основные факты,	1.1. Понятие о комплексных числах. Формы записи комплексного числа. Изображение комплексных чисел. Модуль и аргумент. 1.2. Действия с комплексными числами. Извлечение корня из комплексного числа. Множества на комплексной плоскости.	1. Комплексные числа и множества на комплексной плоскости	
2.	ОПК-2	концепции, принципы теорий, связанных с прикладной математикой и информатикой способностью приобретать новые научные и	 2.1. Действительная и мнимая части функции комплексного переменного. 2.2. Определения основных функций комплексного переменного. 2.3. Условия Коши-Римана. Аналитические функции. Восстановление аналитической функции по ее мнимой или действительной части. Гармонические функции. 2.4. Геометрический смысл модуля и аргумента производной аналитической функции. Конформные отображения. 	2. Функции ком- плексного перемен- ного	
		профессиональные знания, используя современные образовательные и информационные технологии	 3.1. Определение интеграла от комплексной переменной. Независимость интеграла от аналитической функции от пути интегрирования. 3.2. Теорема Коши. Интегральная формула Коши. Интегральная формула Коши для многосвязной области. 	3. Интеграл от функции комплексной переменной	
3.	ПК-2	способностью понимать, совершенствовать и применять современный математический аппарат	 4.1. Ряд Тейлора. Основные разложения в степенной ряд. 4.2. Ряд Лорана. Классификация особых точек функции по виду ряда Лорана. 5.1. Вычет функции. Нахождение вычета в полюсе функции и в существенно особой точке. Основная теорема о вычетах. Вторая теорема о вычетах. 5.2. Вычисление определенных интегралов с помощью теоремы о вычетах. Вычисление определенных интегралов с помощью комплексной замены. 	4. Ряды Тейлора.Ряды Лорана5. Вычеты. Основная теорема о вычетах	

3. Описание показателей и критериев оценивания компетенций

Показатели	Оценка	Критерии
Знать		Свободно и уверенно находит достоверные ис-
(ОПК-1)		точники информации, оперирует предоставлен-
- виды и специфику источников достоверной		ной информацией, отлично владеет навыками
математической информации, (учебники,		анализа и синтеза информации, знает все основ-
учебные пособия, конспекты лекций, интер-		ные методы решения проблем, предусмотрен-
нет, научные статьи).		ные учебной программой, знает типичные
(ОПК-2)	Отлично	ошибки и возможные сложности при решении
- способы поиска, интерпретации, представ-		той или иной проблемы и способен выбрать и
ления в требуемом виде научной математиче-		эффективно применить адекватный метод реше-
ской информации, использовать при этом со-		ния конкретной проблемы или учебной задачи.
временные образовательные и информацион-		Демонстрирует на высоком уровне навыки вы-
ные технологии.		полнения расчетов и вычислений. Грамотно ис-
(ΠK-2)		пользует при этом возможности вычислитель-
- основные математические понятия и методы		ных устройств и информационных технологий.
исследования, особенности их применимости		В большинстве случаев способен выявить дос-
в разных научных областях, специфику мате-		товерные источники информации, обработать,
матических символов.		анализировать и синтезировать предложенную
Уметь		информацию, выбрать метод решения пробле-
(OПК-1)		мы и решить ее. Допускает единичные серьез-
- на основе найденной информации выбирать		ные ошибки в решении проблем, испытывает
оптимальный способ решения математиче-	Хорошо	сложности в редко встречающихся или слож-
ской проблемы или задачи; анализировать		ных случаях решения проблем, не знает ти-
полученные результаты и делать на их основе		
выводы.		пичных ошибок и возможных сложностей при решении той или иной проблемы. Демонстри-
(ОПК-2)		1 -
I'		рует на достаточном уровне навыки выполне-
- осуществлять целенаправленный поиск ма-		ния расчетов и вычислений. Изредка исполь-
тематической информации; использовать раз-		зует при этом возможности вычислительных
личные источники информации в своей рабо-		устройств и информационных технологий.
те; проводить аналитические обзоры инфор-		Допускает ошибки в определении достоверно-
мации: структурировать, минимизировать,		сти источников информации. Демонстрирует
выделять главное, устанавливать связи между		на низком уровне способность применять тео-
элементами.	Удовле-	ретические знания к конкретному фактиче-
(ПК-2)	твори-	скому материалу. В отдельных случаях спосо-
- грамотно применять основные математиче-	тельно	бен правильно решать только типичные, наи-
ские символы, понятия и методы исследова-	TestBito	более часто встречающиеся проблемы, задачи
ния.		в конкретной области. Демонстрирует на низ-
Владеть		ком уровне навыки выполнения расчетов и
(OΠK-1)		вычислений.
- техниками выполнения расчетов и вычисле-		Неспособен осуществлять поиск необходимой
ний, навыками математической обработки		информации, обрабатывать информацию, не
результатов измерений и вычислений, пред-		имеет навыков анализа и синтеза, не знает ме-
ставления результатов в требуемом виде.		тодов решения проблем, задач, не может ре-
(OΠK-2)		шать проблемы, задачи. Не владеет техникой
- приемами визуализации информации: пред-		вычислений.
ставление в виде графиков, схем, таблиц.	Неудов-	
(ΠK-2)	летвори-	
- навыками решения задач из разных областей	тельно	
математики.		
- навыками использования измерительных и		
вычислительных устройств, информационных		
технологий для выполнения расчетов, вычис-		
лений, составления и оформления результатов		
решения задач.		

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности

Дисциплина Комплексный анализ направлена на углубление знаний обучающихся о месте и роли математики в современном мире, мировой культуре и истории; на получение теоретических знаний и практических навыков применения системы фундаментальных математических знаний для идентификации, формулирования и решения проблем в профессиональной сфере, а также осуществления поиска, хранения, обработки и анализа информации из различных источников и представления ее в соответствующем виде и для их дальнейшего использования в практической деятельности.

Изучение дисциплины Комплексный анализ предусматривает:

- лекции,
- практические занятия;
- контрольные работы;
- экзамен;
- самостоятельную работу студента.

В ходе освоения раздела 1 «Комплексные числа и множества на комплексной плоскости» студенты должны уяснить идеи действий над комплексными числами и применения комплексной плоскости.

В ходе освоения раздела 2 «Функции комплексного переменного» студенты осваивают основные приемы и методы анализа функций.

В ходе освоения раздела 3 «Интеграл от функции комплексной переменной» студенты осваивают понятие интегрирования для функций комплексной переменной.

В ходе освоения раздела 4 «Ряды Тейлора. Ряды Лорана» студенты осваивают Разложение в ряд для функций комплексной переменной.

В ходе освоения раздела 5 «Вычеты. Основная теорема о вычетах» студенты углубляют полученные ранее знания об интегрировании функций комплексной переменной.

Студентам необходимо овладеть навыками и умениями применения изученных методов для разработки и реализации профессионально ориентированных проектов в последующей учебной деятельности.

В процессе изучения дисциплины рекомендуется на первом этапе обратить внимание на специфику математических текстов и умение выбирать методы решения различных задач.

Овладение ключевыми понятиями является основой усвоения учебного материала по дисциплине.

При подготовке к экзамену особое внимание необходимо уделить рекомендациям и замечаниям преподавателей, ведущих аудиторные занятия по дисциплине

В процессе проведения практических занятий происходит закрепление знаний, формирование умений и навыков применения различных методов решения стандартных математических ситуаций.

Самостоятельную работу необходимо начинать с чтения лекций и учебников.

В процессе консультации с преподавателем обучающийся выясняет наличие пробелов в знаниях и способах решения разных ситуаций.

Работа с литературой является важнейшим элементом в получении знаний по дисциплине. Прежде всего, необходимо воспользоваться списком рекомендуемой по данной дисциплине литературой. Дополнительные сведения по изучаемым темам можно найти в периодической печати и Интернете.

Предусмотрено проведение аудиторных занятий в виде разнообразных тренингов и ситуаций общения в сочетании с внеаудиторной работой.

АННОТАЦИЯ

рабочей программы дисциплины Комплексный анализ

1. Цель и задачи дисциплины

Целью изучения дисциплины является: знакомство обучающихся с местом и ролью математики в современном мире, мировой культуре и истории; формирование личности обучающихся, развитие их интеллекта и способностей к логическому и алгоритмическому мышлению.

Обучение основным математическим методам преследует цель развития способностей применять систему фундаментальных математических знаний для идентификации, формулирования и решения технологических проблем в области профессиональной деятельности, а также осуществлять поиск, хранение, обработку и анализ информации из различных источников и представлять ее в соответствующем виде

Задачи дисциплины состоят в том, чтобы на примерах математических понятий и методов продемонстрировать обучающимся действие законов материального мира, сущность научного подхода, специфику математики и ее роль в научно-техническом прогрессе, а также создать фундамент математического образования, необходимый для развития профессиональных компетенций и для изучения последующих дисциплин.

2. Структура дисциплины

2.1 Распределение трудоемкости по отдельным видам учебных занятий, включая самостоятельную работу: Лк.-34 час., ПЗ-34 час.; СР-31 час.

Общая трудоемкость дисциплины составляет 144 часа, 4 зачетных единиц

- 2.2 Основные разделы дисциплины:
 - 1 Комплексные числа и множества на комплексной плоскости
 - 2 Функции комплексного переменного
 - 3 Интеграл от функции комплексной переменной
 - 4 Ряды Тейлора. Ряды Лорана
 - 5 Вычеты. Основная теорема о вычетах

3. Планируемые результаты обучения (перечень компетенций)

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ОПК-1 способностью использовать базовые знания естественных наук, математики и информатики, основные факты, концепции, принципы теорий, связанных с прикладной математикой и информатикой.
- ОПК-2 способностью приобретать новые научные и профессиональные знания, используя современные образовательные и информационные технологии.
- ПК-2 способностью понимать, совершенствовать и применять современный математический аппарат.
 - 4. Виды промежуточной аттестации: экзамен.

Протокол о дополнениях и изменениях в рабочей программе на 201__ - 201__ учебный год

1. В рабочую программу по дисциплине вносятся следующие допол	інения:
2. В рабочую программу по дисциплине вносятся следующие измен	ления:
Протокол заседания кафедры № от «» о	201 г.,
Заведующий кафедрой	(Ф.И.О.)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ПО ДИСЦИПЛИНЕ

1. Описание фонда оценочных средств (паспорт)

No	Элемент	Danzaz	Torre	ФОС
компетенции	компетенции	Раздел	Тема	ФОС
ОПК-1 способностью использовать базовые знания естественных наук, математики		1. Комплексные нисла и множества на комплексной плоскости.	1.1. Понятие о комплексных числах. Формы записи комплексного числа. Изображение комплексных чисел. Модуль и аргумент. 1.2. Действия с комплексными числа-	Тест
	и информатики, основные факты, концепции, принципы теорий,	1. Ко числа на ко	ми. Извлечение корня из комплексного числа. Множества на комплексной плоскости. 2.1. Действительная и мнимая части	Контрольная работа Тест
	связанных с прикладной математикой и	лексного	функции комплексного переменного.	Контрольная работа Тест
	информатикой		2.2. Определения основных функций комплексного переменного. 2.3. Условия Коши-Римана. Аналити-	Тест
ОПК-2	способностью приобретать новые научные и	 Функции комплексного переменного 	ческие функции. Восстановление аналитической функции по ее мнимой или действительной части. Гармонические функции.	
профессиональные знания, используя современные образовательные и	2. Đ	2.4. Геометрический смысл модуля и аргумента производной аналитической функции. Конформные отображения.	Тест Контрольная работа	
	информационные технологии	3. Интеграл от функции комплексной переменной	3.1. Определение интеграла от ком- плексной переменной. Независимость интеграла от аналитической функции от пути интегрирования.	Тест
ПК-2	способностью понимать, совершенствовать	3. Инфукомп	3.2. Теорема Коши. Интегральная формула Коши. Интегральная формула Коши для многосвязной области.	Тест
и применять современный математический аппарат	современный математический	4. Ряды Тейлора. Ряды Лорана	4.1. Ряд Тейлора. Основные разложения в степенной ряд.	Тест Контрольная работа
	итпири	4. Р Тей Ряды	4.2. Ряд Лорана. Классификация особых точек функции по виду ряда Лорана.	Тест
		Основная	5.1. Вычет функции. Нахождение вычета в полюсе функции и в существенно особой точке. Основная теорема о вычетах. Вторая теорема о вычетах.	Тест
		5. Вычеты. Основная теорема о вычетах	5.2. Вычисление определенных интегралов с помощью теоремы о вычетах. Вычисление определенных интегралов с помощью комплексной замены.	Тест

2. Описание показателей и критериев оценивания компетенций

Так как текущий контроль проводится в форме тестирования и предназначен для проверки знаний самими обучающимися, тест может быть зачтен или не зачтен. В дальнейшем студенты могут повторить попытки выполнить тест по той теме, где были обнаружены пробелы в его знаниях.

Показатели	Оценка	Критерии
Знать (ОПК-1) - виды и специфику источников достоверной математической информации, (учебники, учебные пособия, конспекты лекций, интернет, научные статьи). (ОПК-2) - способы поиска, интерпретации, представления в требуемом виде научной математической информации, использовать при этом современные образовательные и информационные технологии. (ПК-2) - основные математические понятия и методы исследования, особенности их применимости в разных научных областях, специфику математических символов. Уметь (ОПК-1)	Зачтено	Демонстрирует более половины показателей на достаточном и высоком уровне
- на основе найденной информации выбирать оптимальный способ решения математической проблемы или задачи; анализировать полученные результаты и делать на их основе выводы. (ОПК-2) - осуществлять целенаправленный поиск математической информации; использовать различные источники информации в своей работе; проводить аналитические обзоры информации: структурировать, минимизировать, выделять главное, устанавливать связи между элементами. (ПК-2) - грамотно применять основные математические символы, понятия и методы исследования. Владеть (ОПК-1) - техниками выполнения расчетов и вычислений, навыками математической обработки результатов измерений и вычислений, представления результатов в требуемом виде. (ОПК-2) - приемами визуализации информации: представление в виде графиков, схем, таблиц. (ПК-2) - навыками решения задач из разных областей математики навыками использования измерительных и вычислительных устройств, информационных технологий для выполнения расчетов, вычислений, составления и оформления результатов решения задач.	Не зачтено	Демонстрирует большинство показателей на недостаточном и крайне низком уровне

Фонд тестовых заданий

по дисциплине

Б1.Б.08 Комплексный анализ

ТЕМАТИЧЕСКАЯ СТРУКТУРА ТЕСТОВ

TEMATIMECKAN CIPYKTYPA TECTOB					
N	Наименование	N	Тема задания		
раздела	радела	задания	,,		
1.	Комплексные числа и множества на комплексной плоскости	1,2,4,20,21 3,19	Понятие о комплексных числах. Формы записи комплексного числа. Изображение комплексных чисел. Модуль и аргумент.		
		7 9,10,29	Действия с комплексными числами. Извлечение корня из комплексного числа. Множества на комплексной плоскости.		
		5	Действительная и мнимая части функции комплексного переменного.		
		6	Определения основных функций комплексного переменного.		
2.	Функции ком- плексного пе- ременного	8	Условия Коши-Римана. Аналитические функции. Восстановление аналитической функции по ее мнимой или действительной части. Гармонические функции.		
		24	Геометрический смысл модуля и аргумента производной аналитической функции. Конформные отображения.		
3.	Интеграл от функции ком-	18	Определение интеграла от комплексной переменной. Независимость интеграла от аналитической функции от пути интегрирования.		
	плексной пере- менной	22	Теорема Коши. Интегральная формула Коши. Интегральная формула Коши для многосвязной области.		
4.	Ряды Тейлора.	11,12,13,	Ряд Тейлора. Основные разложения в степенной ряд.		
Ряды	Ряды Лорана	14,16,17,25,26,27	Ряд Лорана. Классификация особых точек функции по виду ряда Лорана.		
5.	Вычеты. Ос- новная теорема	15,28	Вычет функции. Нахождение вычета в полюсе функции и в существенно особой точке. Основная теорема о вычетах. Вторая теорема о вычетах.		
3.	о вычетах (Итоговый тест)	23	Вычисление определенных интегралов с помощью теоремы о вычетах. Вычисление определенных интегралов с помощью комплексной замены.		

Тестовые задания

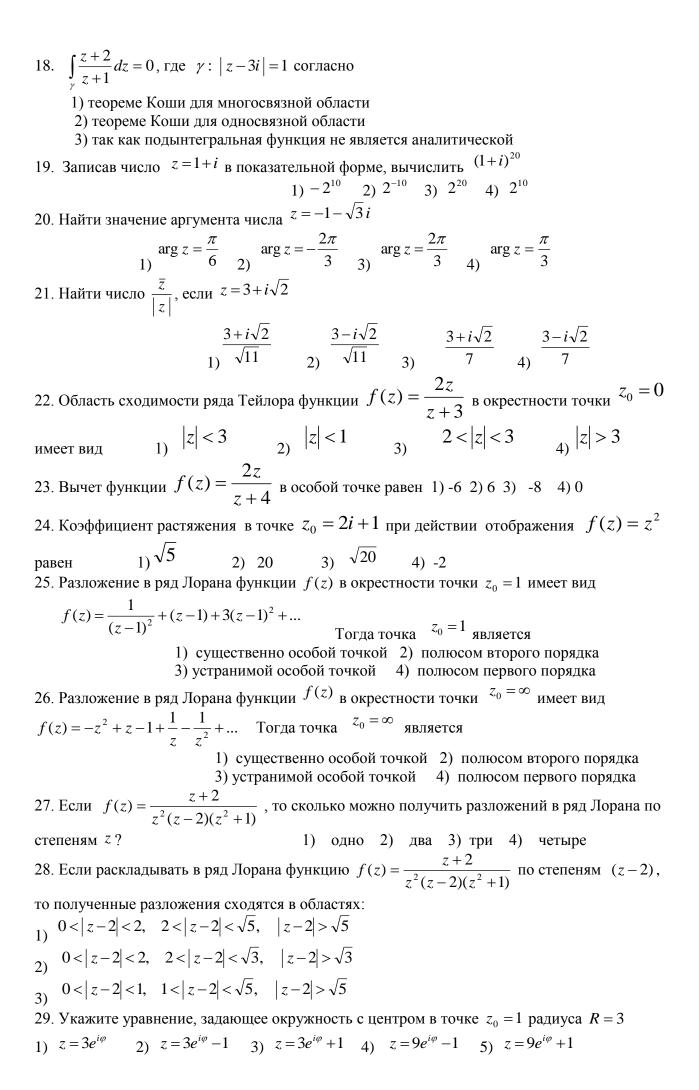
- 1. В какой четверти находится точка, изображающая комплексное число z=-2-4i1) в 1 четверти 2) в 2 четверти 3) в 3 четверти 4) в 4четверти
- 2. Найти модуль числа z = -3 + 5i

1) 2 2) 8 3) $\sqrt{34}$ 4) 4

3. Показательная форма записи числа z = -4 имеет вид

1)
$$4e^{i\pi}$$
 2) $-4e^{-i\pi}$ 3) $4e^{-i\frac{\pi}{2}}$ 4) $-4e^{-i\frac{\pi}{2}}$ 4. Найдите корни квадратного уравнения $x^2-2x+5=0$

1) не существуют 2) $1\pm 2i$ 3) $-1\pm 2i$


5.Дана функция $f(z) = \frac{1}{z-3}$. Найти f(2+i) 1) $\frac{1+i}{2}$ 2) $-\frac{1-i}{2}$ 3) $\frac{1-i}{2}$ 4) $-\frac{1+i}{2}$

6. Для функции $f(z) = e^{2z}$ найти действительную и мнимую части

$$1) \frac{u = \cos 2x}{v = \sin 2y} \qquad 2) \frac{u = e^{2x} \cos 2y}{v = e^{2x} \sin 2y} \qquad 3) \frac{u = e^{2x} \cos 2y}{v = i e^{2x} \sin 2y}$$
7. Укажите все значения кория $\sqrt[3]{-1}$ 1) -1 2) -1 , $\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$ 3) 1 , $-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$ 4) ± 1 8. Укажите правильную формулу
1) $Lnz = \ln |z| + i \arg z = 2$) $Lnz = \ln |z| + i (\arg z + 2k\pi)$ 3) $Lnz = \ln z + i (\arg z + 2k\pi)$ 9. Какую кривую задает уравнение $|z - 2| = 25$?

1) окружность с центром в точке (2.0) радиуса 25
2) окружность с центром в точке (2.0) радиуса 5
3) окружность с центром в точке (2.0) радиуса 5
4) окружность с центром в точке (2.0) радиуса 5
10. Какое уравнение задает окружность с центром в точке $z_0 = -4 + i$ радиуса 4 ?
11. Какой из рядов является разложением функции $f(z)$ в ряд Тейлора в окрестности точки z_0 ?
12. Ряд $\sum \frac{f^{(n)}(z_0)}{n!} \cdot (z - z_0)^n$ 2) $f(z) = \sum \frac{f^{(n)}(z_0)}{n!} \cdot z^n$ 3) $f(z) = \sum f^{(n)}(z_0) \cdot (z - z_0)^n$ 12. Ряд $\sum \frac{(z - 1)^n}{n}$ сходится абсолютно
1) всюду 2) всюду расходится 3) при $|z - 1| \le 1$ 4) при $|z - 1| < 1$ 13. Укажите разложение в ряд для функции $f(z) = \sin z$ $\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots$ $\sin z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots$ $\sin z = z + \frac{z^3}{3!} + \frac{z^5}{5!} + \dots$ 14. Укажите особые точки функции $f(z) = \frac{z}{(z - 2)^2} \cdot \cos \frac{1}{z + 1}$ 15. Укажите формулу для вычисления вычета функции $f(z)$ в точке z_0 , если z_0 - полюс с порядка, $z = -1$ существенно особая точка 15. Укажите формулу для вычисления вычета функции $f(z)$ в точке z_0 , если z_0 - полюс первого порядка $z_0 = 2\pi i \lim_{z \to z_0} (z - z_0) \cdot f(z)$ 3) $z = 2$ $z = 1$ (упественно особые точки $z_0 = 1$ $z = 1$

17. Укажите окрестности точки $z_0 = \infty$ |z| > 1 |z| > 1 |z| < 1 |z| < 1 |z-3i| > 4 |z-1| < 1

Программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению 1.01.03.02 Прикладная математика и информатика от «12» марта 2015 г. № 228 и

для набора 2018 года: учебным планом ФГБОУ ВО «БрГУ» для очной формы обучения от «12» марта 2018 г. № 130.

Программу составили:	
Н.В. Емельянова	
Рабочая программа рассмотрена и утверждена на заседании кафедры МиФ	
от «»20 г., протокол №	
И.о. заведующего кафедрой МиФ О.И. Медведева	
СОГЛАСОВАНО:	
И.о. заведующего выпускающей кафедрой МиФ	О.И. Медведева
Директор библиотеки	Т.Ф.Сотник
Рабочая программа одобрена методической комиссией Естественнонаучного	о факультета
от « » 201 г., протокол №	
Председатель методической комиссии факультета	М.А. Варданян
СОГЛАСОВАНО:	
Начальник учебно-методического управления	Г.П.Нежевец
Регистрационный №	
(методический отдел)	