ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БРАТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра математики

УТВ	ВЕРЖДАЮ:
Прор	ректор по учебной работе
	Е.И. Луковникова
«	» декабря 2018 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ДИСКРЕТНАЯ МАТЕМАТИКА

Б1.Б.07

НАПРАВЛЕНИЕ ПОДГОТОВКИ

09.03.03 Прикладная информатика

ПРОФИЛЬ ПОДГОТОВКИ

Прикладная информатика в экономике

Программа академического бакалавриата

Квалификация (степень) выпускника: бакалавр

	СОДЕРЖАНИЕ ПРОГРАММЫ	Стр.
1.	ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	. 3
2.	МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ	
•	ПРОГРАММЫ	
3.	РАСПРЕДЕЛЕНИЕ ОБЪЕМА ДИСЦИПЛИНЫ	4
	3.1 Распределение объёма дисциплины по формам обучения	. 4
	3.2 Распределение объёма дисциплины по видам учебных занятий и	1
	трудоемкости	4
4.		
	4.1 Распределение разделов дисциплины по видам учебных занятий	3 7
	4.2 Содержание дисциплины, структурированное по разделам и темам 4.3 Лабораторные работы	
	4.3 Лабораторные работы 4.4 Практические занятия	8 8
	4.5. Контрольные мероприятия: курсовой проект (курсовая работа), контрольная	0
	работа, РГР, реферат	. 8
5.	раоота, гт г, реферат	. 0
3.	К ФОРМИРУЕМЫМ В НИХ КОМПЕТЕНЦИЯМ И ОЦЕНКЕ	
	РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ	9
	тезультатов освоения дисциплины	9
6.	перечень учебно-методического обеспечения для	
υ.	САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИН	E 10
7.	перечень основной и дополнительной литературы,	E 10
٠.	НЕГЕ ТЕПЬ ОСПОБНОЙ И ДОПОЗНИТЕЛЬНОЙ ЗИТЕГАТУТЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	. 10
	провиодиноп доп освоения дисциплины	10
8.	ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО –	
.	ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ	X
	для освоения дисциплины	11
	<u> </u>	
9.	МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ	
	дисциплины	11
	9.1. Методические указания для обучающихся по выполнению практических	
	занятий	11
	9.2. Методические указания по выполнению контрольной работы	21
10.	ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ	
	ПРИ ОСУЩЕСТВЛЕНИЙ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО	
	ДИСЦИПЛИНЕ	21
11.	ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ	
	ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО	
	ДИСЦИПЛИНЕ	21
П	риложение 1. Фонд оценочных средств для проведения промежуточной	
_	аттестации обучающихся по дисциплине	22
П	риложение 2. Аннотация рабочей программы дисциплины	
	риложение 3. Протокол о дополнениях и изменениях в рабочей программе	
	риложение 4. Фонд оценочных средств для текущего контроля успеваемости	\
	по дисциплине	27

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Вид деятельности выпускника

Дисциплина охватывает круг вопросов, относящихся к научно-исследовательскому, проектному, производственно-технологическому, организационно-управленческому, аналитическому видам профессиональной деятельности выпускника в соответствии с компетенциями и видами деятельности, указанными в учебном плане.

Цель дисциплины

Целью изучения дисциплины является знакомство обучающихся с местом и ролью дискретной математики в современном мире, мировой культуре и истории; формирование личности обучающихся, развитие их интеллекта и способностей к логическому и алгоритмическому мышлению.

Обучение основным методам дискретной математики преследует цель развития способностей применять систему фундаментальных математических знаний для идентификации, формулирования и решения технологических проблем в области профессиональной деятельности, а также осуществлять поиск, хранение, обработку и анализ информации из различных источников и представлять ее в соответствующем виде

Задачи дисциплины

Задачи дисциплины состоят в том, чтобы

- на примерах понятий и методов дискретной математики продемонстрировать обучающимся действие законов материального мира, сущность научного подхода,
- продемонстрировать специфику математических дисциплин и их роль в научнотехническом прогрессе,
- создать фундамент образования, необходимый для развития профессиональных компетенций и для изучения последующих дисциплин.

Код компетенции	Содержание компетенций	Перечень планируемых результатов обучения по дисциплине
1	2	3
ОПК-3	способность использовать основные законы естественнонаучных дисциплин и современные информационнокоммуникационные технологии в профессиональной деятельности	знать - виды и специфику источников достоверной математической информации, (учебники, учебные пособия, конспекты лекций, интернет, научные статьи) основные математические понятия и методы исследования, особенности их применимости в разных научных областях, специфику математических символов. Уметь - осуществлять целенаправленный поиск математической информации; использовать различные источники информации в своей работе; проводить аналитические обзоры информации: структурировать, минимизировать, выделять главное, устанавливать связи между базовыми элементами на основе найденной информации выбирать оптимальный способ решения математической проблемы или задачи; анализировать полученные результаты и делать на их основе выводы грамотно применять основные математические символы, понятия и методы исследования. Владеть - приемами визуализации информации: представление в виде графиков, схем, таблиц техниками выполнения расчетов и вычислений, навыками математической обработки результатов измерений и вычислений, представления результатов в требуемом виде навыками решения задач из разных областей математики навыками использования измерительных и вычислительных устройств, информационных технологий для выполнения расчетов, вычислений, составления и оформления результатов решения задач.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина Б1.Б.07 Дискретная математика относится к базовой части.

Дисциплина Дискретная математика базируется на знаниях, полученных при изучении основных общеобразовательных программ. Дискретная математика представляет основу для изучения дисциплин: Информатика и программирование, Программная инженерия, Проектирование информационных систем, Исследование операций и методы оптимизации, Математическое и имитационное моделирование.

Такое системное междисциплинарное изучение направлено на достижение требуемого $\Phi \Gamma O C$ уровня подготовки по квалификации бакалавр.

3. РАСПРЕДЕЛЕНИЕ ОБЪЕМА ДИСЦИПЛИНЫ

3.1. Распределение объема дисциплины по формам обучения

			Трудоемкость дисциплины в часах							Da. A	
Форма обучения	Курс	Семестр	Всего часов (с экз.)	Аудиторных часов	Лекции	Лабораторные работы	Практические занятия	Самостоя- тельная ра- бота	Конт- рольная работа	Вид проме- жуточ- ной ат- тестации	
1	2	3	4	5	6	7	8	9	10	11	
Очная	1	1	144	51	17	-	34	57	-	экзамен	
Заочная	2	-	144	11	5	-	6	124	-	экзамен	
Заочная набор	2	-	144	17	5	-	12	118	-	экзамен	
2014г.											
Заочная (ускоренное обучение)	-	-	ı	-	ı	-	-	-	-	-	
Очно-заочная	-		-	-	•	-	-	-	-	-	

3.2. Распределение объема дисциплины по видам учебных занятий и трудоемкости

Вид учебных занятий	Трудо- ем- кость (час.)	в т.ч. в интерактивной, активной, инновационной формах, (час.)	Распределение по семестрам, час
1	2	3	4
I. Контактная работа обучающихся с преподавателем (всего)	51	12	51
Лекции (Лк)	17	6	17
Практические занятия (ПЗ)	34	6	34
Групповые (индивидуальные) консультации	+	-	+
II.Самостоятельная работа обучаю- щихся (СР)	57	-	57
Подготовка к практическим занятиям	27	-	27
Подготовка к экзамену в течение семестра	30	-	30
III. Промежуточная аттестация			
экзамен	36	-	36
Общая трудоемкость дисциплины час.	144		144
зач. ед.	4	-	4

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Распределение разделов дисциплины по видам учебных занятий

- для очной формы обучения:

№ раз- дела и	Наименование раздела и	Трудо- емкость,	Виды учебных занятий, включая само- стоятельную работу обучающихся и трудоемкость; (час.)			
темы	тема дисциплины	(час.)	<u>учебн</u> лекции	ные занятия практические занятия	самостоятель- ная работа обу- чающихся*	
1	2	3	4	6	7	
1.	Элементы теории множеств	23	2	4	17	
1.1.	Множества и действия над ними. Отношения и функции. Специальные бинарные отношения.	13	1	2	10	
1.2.	Эквивалентные, конечные, бесконечные множества. Кардинальные числа. Аксиомы теории множеств.	10	1	2	7	
2.	Дискретные структуры (графы, сети)	59	13	26	20	
2.1.	Основные определения. Метрические характеристики графов. Выявление маршрутов с заданным количеством ребер. Алгоритм Уоршолла.	12	2	6	4	
2.2.	Нахождение кратчайших путей. Алгоритм Дейкстры. Алгоритм Беллмана-Мура. Алгоритм нахождения максимального пути.		3	6	4	
2.3.	Деревья. Задача об остове экстремального веса. Обходы графов, фундаментальные циклы.		3	4	4	
2.4.	Планарные графы. Хроматические графы. Раскраска графов. Минимальная раскраска. Составление расписаний.		2	4	4	
2.5.	Потоки в сетях. Теорема Форда-Фалкерсона. Нахождение максимального потока. Минимальный разрез.		3	6	4	
3.	Комбинаторика	26	2	4	20	
3.1	Бином Ньютона и полиномиальная теорема.	13	1	2	10	
3.2	Перестановки, сочетания, размещения. Свойства биномиальных коэффициентов.	13	1	2	10	
	ИТОГО	108	17	34	57	

- для заочной формы обучения:

№ раз- дела и	Наименование раздела и	Трудоем- кость,	Виды учебных занятий, включая само- стоятельную работу обучающихся и трудоемкость; (час.)			
темы	ризоски и тема дисциплины	кость, (час.)		ые занятия	самостоятель- ная работа обу-	
			лекции	занятия	чающихся*	
1	2	3	4	6	7	
1.	Элементы теории множеств	26	1	1	24	
1.1.	Множества и действия над ними. Отношения и функции. Специальные бинарные отношения.	13	0,5	0,5	12	
1.2.	Эквивалентные, конечные, бесконечные множества. Кардинальные числа. Аксиомы теории множеств.	13	0,5	0,5	12	
2.	Дискретные структуры (графы, сети)	67	3	4	60	

2.6.	Основные определения. Метрические характеристики графов. Выявление маршрутов с заданным количеством ребер. Алгоритм Уоршолла.	13	0,5	0,5	12
2.7.	Нахождение кратчайших путей. Алгоритм Дейкстры. Алгоритм Беллмана-Мура. Алгоритм нахождения максимального пути.	13	0,5	0,5	12
2.8.	Деревья. Задача об остове экстремального веса. Обходы графов, фундаментальные циклы.	13,5	0,5	1	12
2.9.	Планарные графы. Хроматические графы. Раскраска графов. Минимальная раскраска. Составление расписаний.	13,5	0,5	1	12
2.10.	Потоки в сетях. Теорема Форда-Фалкерсона. Нахождение максимального потока. Минимальный разрез.	14	1	1	12
3.	Комбинаторика	42	1	1	40
3.1	Бином Ньютона и полиномиальная теорема.	21	0,5	0,5	20
3.2	Перестановки, сочетания, размещения. Свойства биномиальных коэффициентов.	21	0,5	0,5	20
	ИТОГО	135	5	6	124

- для заочной формы обучения набор 2014 г.:

№ раз- дела и	дела и раздела и		Виды учебных занятий, включая само- стоятельную работу обучающихся и трудоемкость; (час.) учебные занятия самостоятель-			
темы	тема дисциплины	(час.)	лекции		ная работа обу- чающихся*	
1	2	3	4	6	7	
1.	Элементы теории множеств	26	1	1	24	
1.1.	Множества и действия над ними. Отношения и функции. Специальные бинарные отношения.	13	0,5	1,5	11	
1.2.	Эквивалентные, конечные, бесконечные множества. Кардинальные числа. Аксиомы теории множеств.	13	0,5	1,5	11	
2.	Дискретные структуры (графы, сети)	67	3	4	60	
2.11.	Основные определения. Метрические характеристики графов. Выявление маршрутов с заданным количеством ребер. Алгоритм Уоршолла.	13	0,5	1,5	11	
2.12.	Нахождение кратчайших путей. Алгоритм Дейкстры. Алгоритм Беллмана-Мура. Алгоритм нахождения максимального пути.	13	0,5	1,5	11	
2.13.	Деревья. Задача об остове экстремального ве- са. Обходы графов, фундаментальные циклы.	13,5	0,5	1	12	
2.14.	Планарные графы. Хроматические графы. Раскраска графов. Минимальная раскраска. Составление расписаний.	13,5	0,5	1	12	
2.15.	Потоки в сетях. Теорема Форда-Фалкерсона. Нахождение максимального потока. Минимальный разрез.	14	1	1	12	
3.	Комбинаторика	42	1	1	40	
3.1	Бином Ньютона и полиномиальная теорема.	21	0,5	1,5	19	
3.2	Перестановки, сочетания, размещения. Свойства биномиальных коэффициентов.	21	0,5	1,5	19	
	ИТОГО	135	5	12	118	

4.2. Содержание дисциплины, структурированное по разделам и темам

<u>№</u> раздела и темы	пазоела и темы — Сооепжание лекиионных занятии		Вид занятия в ин- терактивной, ак- тивной, инноваци- онной формах, (час.)		
1	2	· · · · · · · · · · · · · · · · · · ·	4		
1.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Элементы теории множеств			
1.1.	Множества и действия над ними. Отношения и функции. Специальные бинарные отношения.	Множество, подмножество, равенство множеств, булеан. Объединение, пересечение множеств, разность, симметрическая разность. Законы алгебры множеств: коммутативный, ассоциативный, дистрибутивный, законы де Моргана. Бинарное отношение, область определения и область значений бинарного отношения. Композиция бинарных отношений. Функция, отображение. Инъективное, сюръективное, биективное отображение.	Лекция-беседа (2 часа)		
1.2.	Эквивалентные, конечные, бесконечные множества. Кардинальные числа. Аксиомы теории множеств.	Эквивалентные множества. Рефлексивность, симметричность, транзитивность. Мощность множества. Конечные, бесконечные, счетные множества. Кардинальные числа. Аксиомы теории множеств. Система аксиом Цермело-Френкеля: аксиома объемности, объединения, степени, подстановки, регулярности, бесконечности.	-		
2.		Дискретные структуры (графы, сети)			
2.1.	Метрические характеристи- ки графов. Выявление мар- шрутов с заданным количе-	Неориентированные и ориентированные графы. Вершины и ребра графа. Операции над графами: объединение, произведение, отождествление вершин, расщепление вершин. Маршруты, цепи, циклы, пути. Матрица инцидентности и смежности. Метрические характеристики графа: расстояние, эксцентриситет, диаметр. Нахождение путей в графе с заданным количеством ребер. Матрица достижимости. Алгоритм Уоршолла.	Лекция- беседа (2 часа)		
2.2.	путей. Алгоритм Дейкстры. Алгоритм Беллмана-Мура.	Нахождение кратчайших путей. Алгоритм Дейкстры. Нахождение длины кратчайшего пути. Построение кратчайшего пути. Алгоритм Беллмана-Мура нахождения кратчайшего пути в графе. Упорядочивание элементов графа. Матричный способ, графический способ (алгоритм Фалкерсона). Алгоритм нахождения максимального пути.	-		
2.3.	экстремального веса. Обходы графов, фундаментальные циклы.	Обходы графов. Эйлеров граф. Четность и нечетность вершин графа. Фундаментальные циклы.	-		
2.4.	тические графы. Раскраска графов. Минимальная рас-	Планарные графы, плоская укладка графов. Теорема Понтрягина-Куратовского. Алгоритм укладки графа на плоскость. Раскраска графов, хроматическое число, хроматический граф. Гипотеза четырех красок. Алгоритм последовательной раскраски графа, минимальная раскраска. Составление расписаний, раскраска карты.	-		
2.5.	Форда-Фалкерсона. Нахож-	Потоки в сетях, сток, источник, матрица пропускных способностей дуг. Условие сохранения потока, остаточная пропускная способность, насыщенные дуги. Пропускная способность минимального разреза. Алгоритм Форда-Фалкерсона построения максимального потока и минимального разреза. Полный поток. Пополнение потока за счет непустых обратных дуг.	-		
3.		Комбинаторика			
3.1	Бином Ньютона и полиномиальная теорема.	Основные определения комбинаторного анализа. Задачи на размещения, задачи о покрытиях и заполнениях, задачи о маршрутах, перечислительные задачи. Дискретные множества. Правило суммы и правило произведения. Непересекающиеся множества, разбиение множества. Бином Ньютона. Полиномиальная теорема.	Лекция-беседа (2 часа)		

3.2	Перестановки, сочетания,	Перестановки из n элементов. Сочетания из n элемен-	
	размещения. Свойства би-	тов по k элементов. Размещения из n элементов по k	
	номиальных коэффициен-	элементов. Формулы для расчета перестановок и соче-	-
	TOB.	таний без повторений и с повторениями. Свойства би-	
		номиальных коэффициентов.	

4.3. Лабораторные работы учебным планом не предусмотрено.

4.4. Практические занятия

<u>№</u> n/n	Номер раз- дела дис- циплины	Наименование тем практических занятий	Объем в часах	Вид занятия в интерактивной, активной, инновационной формах, (час.)
1	1.	Множества и действия над ними. Отношения и функции. Специальные бинарные отношения	2	Анализ ситуа- ций (2 час)
2	1.	Эквивалентные, конечные, бесконечные множества. Кардинальные числа. Аксиомы теории множеств.	2	-
3		Основные определения. Метрические характеристики графов. Выявление маршрутов с заданным количеством ребер. Алгоритм Уоршолла.	6	-
4		Нахождение кратчайших путей. Алгоритм Дейкстры. Алгоритм Беллмана-Мура. Алгоритм нахождения максимального пути.	6	-
5	2.	Деревья. Задача об остове экстремального ве- са. Обходы графов, фундаментальные циклы.	4	Работа в малых группах (2 час)
6		Планарные графы. Хроматические графы. Раскраска графов. Минимальная раскраска. Составление расписаний.	4	-
7		Потоки в сетях. Теорема Форда-Фалкерсона. Нахождение максимального потока. Минимальный разрез.	6	-
8		Бином Ньютона и полиномиальная теорема.	2	-
9	3.	Перестановки, сочетания, размещения. Свойства биномиальных коэффициентов.	2	Работа в малых группах (2 час)
		ОТОТИ	34	6

4.5. Контрольные мероприятия учебным планом не предусмотрено.

5. МАТРИЦА СООТНЕСЕНИЯ РАЗДЕЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ К ФОРМИРУЕМЫМ В НИХ КОМПЕТЕНЦИЯМ И ОЦЕНКЕ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Компетенции №, наименование разделов дисциплины	Кол-во часов	Компе- тенции ОПК	Σ комп.	t _{cp} , час	Вид учебных занятий	Оценка результатов
1	2	3	4	5	6	7
1. Элементы теории множеств	23	+	1	23	Лк, ПЗ	экзамен
2. Дискретные структуры (графы, сети)	59	+	1	59	Лк, ПЗ	экзамен
3. Комбинаторика	26	+	1	26	Лк, ПЗ	экзамен
всего часов	108	-	1	108	-	-

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

а) Подготовка к лекционным и практическим занятиям

- 1. Судоплатов, С. В. Дискретная математика: учебник для вузов / С. В. Судоплатов, Е. В. Овчинникова. 2-е изд., перераб. Москва: ИНФРА-М, 2012. 256 с. http://biblioclub.ru/index.php?page=book red&id=135675&sr=1
- 2. Ерусалимский, Я. М. Дискретная математика. Теория, задачи, приложения : учеб. пособие для вузов / Я. М. Ерусалимский. 7-е изд. Москва : Вузовская книга, 2005. 268 с.

б) Самоподготовка и самопроверка

- 1. Алпатов, Ю. Н. Дискретная математика : учебное пособие / Ю. Н. Алпатов. Братск : БрГУ, 2005. 134 с.
- 2. Иванов, Б. Н. Дискретная математика. Алгоритмы и программы. Полный курс: учеб. пособие для вузов / Б. Н. Иванов. Москва: Физматлит, 2007. 408 с.

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

№	Наименование издания	Вид заня- тия (Лк, ПЗ)	Количе- ство эк- земпляров в библио- теке, шт.	Обеспе- чен- ность, (экз./ чел.)
1	2	3	4	5
	Основная литература	1	Τ	
1	Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин 2-е изд., испр. и доп Санкт-Петербург: Лань, 2010 368 с (Учебники для вузов. Специальная литература).	Лк, ПЗ	21	1
	Дополнительная литература	1		
2	Акимов, О. Е. Дискретная математика: логика, группы, графы, фракталы: учебное пособие / О. Е. Акимов Москва: Издатель Акимова, 2005 656 с.	Лк, ПЗ	33	1
3	Белоусов, А. И. Дискретная математика: учебник для вузов / А. И. Белоусов, С. Б. Ткачев; Под ред. В. С. Зарубина 3-е изд Москва: МГТУ им. Н.Э. Баумана, 2004 744 с.	Лк, ПЗ	5	0,25
4	Хаггарти, Р. Дискретная математика для программистов: учебное пособие / Р. Хаггарти; пер. с англ. под ред. С.А. Кулешова; пер. с англ. А.А. Ковалева, В.А. Головешкина, М.В. Ульянова изд. 2-е, испр Москва: РИЦ "Техносфера", 2012 400 с.: табл., схем (Мир программирования) ISBN 978-5-94836-303-5; То же [Электронный ресурс] URL: http://biblioclub.ru/index.php?page=book&id=89024	Лк, ПЗ	10	1,5

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ» НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1. Электронный каталог библиотеки БрГУ

http://irbis.brstu.ru/CGI/irbis64r_15/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=BOOK&P21DBN=BOOK&S21CNR=&Z21ID=.

2. Электронная библиотека БрГУ

http://ecat.brstu.ru/catalog.

- 3. Электронно-библиотечная система «Университетская библиотека online» http://biblioclub.ru.
- 4. Электронно-библиотечная система «Издательство «Лань» http://e.lanbook.com .
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru
- 6. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru .
- 7. Университетская информационная система РОССИЯ (УИС РОССИЯ) https://uisrussia.msu.ru/.
- 8. Национальная электронная библиотека НЭБ http://xn--90ax2c.xn--p1ai/how-to-search/.

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Обучающийся должен разработать собственный режим равномерного освоения дисциплины. Подготовка студента к предстоящей лекции включает в себя ряд важных познавательно-практических этапов:

- чтение записей, сделанных в процессе слушания и конспектирования предыдущей лекции, вынесение на поля всего, что требуется при дальнейшей работе с конспектом и учебником;
- техническое оформление записей (подчеркивание, выделение главного, выводов, доказательств);
 - выполнение практических заданий преподавателя;
- знакомство с материалом предстоящей лекции по учебнику и дополнительной литературе.

Активная работа на лекции, ее конспектирование, продуманная, целенаправленная, систематическая, а главное - добросовестная и глубоко осознанная последующая работа над конспектом - важное условие успешного обучения студентов.

9.1. Методические указания для обучающихся по выполнению практических занятий

Практические занятия позволяет студенту более глубоко разобраться в теоретическом материале и определить сферы его практического применения. Основная цель практического занятия — развитие самостоятельности студента. Подготовка к практическим занятиям состоит в добросовестном анализе теоретического материала, составлении кратких справочников, словариков, схем, алгоритмов. Кроме того, все домашние задания к практическому занятию должны быть выполнены, либо подготовлены вопросы преподавателю, раскрывающие трудности в освоении учебного материала.

<u>Практическое занятие №1</u> Множества и действия над ними. Отношения и функции. Специальные бинарные отношения

Цель: исходя из определений, получить необходимые формулы

Задание: применить полученные формулы для решения задач

Порядок выполнения: 1) решить уравнение; 2) найти пересечение множеств; 3) найти объединение множеств; 4) найти прямое произведение множеств.

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1) Из каких элементов состоят множества $B \cup C$, $A \cap B \cap C$, $A \cup B \cup C$, $B \times C$, $C \times B$

Вариант 1.
$$A = \{x \in N | 2 < x \le 6\}, B = \{x \in N | 1 < x < 4\}, C = \{x \in N | x^2 - 4 = 0\}$$

Вариант 2.
$$A = \{x \in N | -3 < x \le 4\}, B = \{x \in N | -5 < x < 3\}, C = \{x \in N | x^2 - 9 = 0\}$$

Вариант 3.
$$A = \{x \in N | -5 < x \le 6\}, B = \{x \in N | 0 < x < 4\}, C = \{x \in N | x^3 + 64 = 0\}$$

Вариант 4.
$$A = \{x \in N | -3 < x \le 6\}, B = \{x \in N | -4 < x < 4\}, C = \{x \in N | x^3 + x^2 - 2 = 0\}$$

Вариант 5.
$$A = \{x \in N | -3 < x \le 4\}, B = \{x \in N | -5 < x < 3\}, C = \{x \in N | x^2 - 9 = 0\}$$

Вариант 6.
$$A = \{x \in N | -5 < x \le 6\}, B = \{x \in N | 0 < x < 4\}, C = \{x \in N | x^3 - 64 = 0\}$$

Вариант 7.
$$A = \{x \in N | -3 < x \le 6\}, B = \{x \in N | -4 < x < 4\}, C = \{x \in N | x^3 + x^2 - 3x + 1 = 0\}$$

Вариант 8.
$$A = \{x \in N | 0 < x \le 6\}, B = \{x \in N | -1 < x < 4\}, C = \{x \in N | x^3 + 3x^2 - x - 3 = 0\}$$

Вариант 9.
$$A = \{x \in N | 2 < x \le 6\}, B = \{x \in N | 1 < x < 4\}, C = \{x \in N | x^2 - 4 = 0\}$$

Вариант 10.
$$A = \{x \in N \mid 0 < x \le 7\}, B = \{x \in N \mid -3 < x < 4\}, C = \{x \in N \mid x^3 - 5x^2 - x + 5 = 0\}$$

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. - 2-е изд., испр. и доп. - Санкт-Петербург: Лань, 2010. - 368 с. - (Учебники для вузов. Специальная литература).

Дополнительная литература

Акимов, О. Е. Дискретная математика: логика, группы, графы, фракталы: учебное пособие / О. Е. Акимов. - Москва: Издатель Акимова, 2005. - 656 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок действий
- 2. Сформулируйте правила

<u>Практическое занятие №2</u> Эквивалентные, конечные, бесконечные множества. Кардинальные числа. Аксиомы теории множеств.

Цель: исходя из определений, получить необходимые формулы

Задание: применить полученные формулы для решения задач

Порядок выполнения:

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1) доказать утверждения

Вариант 1. Всякое подмножество конечного множества конечно

Вариант 2. Объединение конечного числа конечных множеств конечно

Вариант 3. Множество бесконечно тогда и только тогда, когда оно эквивалентно некоторому собственному подмножеству

Вариант 4. Если A бесконечно и B –конечное или счетное множество, то $A \cup B \cong A$

Вариант 5. Если A бесконечно и несчетно, В конечно или счетно, то $A : B \cong A$

Вариант 6. Объединение конечного числа конечных множеств конечно

Вариант 7. Если A бесконечно и B –конечное или счетное множество, то $A \cup B \cong A$

Вариант 8. Множество многочленов от одной переменной с целыми коэффициентами счетно

Вариант 9. Множества точек двух окружностей эквивалентны

Вариант 10. Множество всех подмножеств P(A) множества A имеет мощность большую, чем A

Рекомендации по выполнению заданий и подготовке к практическому занятию:

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. - 2-е изд., испр. и доп. - Санкт-Петербург: Лань, 2010. - 368 с. - (Учебники для вузов. Специальная литература).

Дополнительная литература

Акимов, О. Е. Дискретная математика: логика, группы, графы, фракталы: учебное пособие / О. Е. Акимов. - Москва: Издатель Акимова, 2005. - 656 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок действий
- 2. Сформулируйте правила

<u>Практическое занятие №3</u> Основные определения. Метрические характеристики графов. Выявление маршрутов с заданным количеством ребер. Алгоритм Уоршолла.

Цель: исходя из определений, получить необходимые формулы

Задание: применить полученные формулы для решения задач

Порядок выполнения:

- 1) построить граф
- 2) определить количество путей в нем заданной длины
- 3) применить алгоритм Уоршолла

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

- 1)По матрице смежности построить граф.
- 2) Определить, есть ли пути в графе длины два.
- 3) Определить, сколько путей длины два.
- 4)По алгоритму Уоршолла построить матрицу достижимости.

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Рекомендации по выполнению заданий и подготовке к практическому занятию:

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. - 2-е изд., испр. и доп. - Санкт-Петербург: Лань, 2010. - 368 с. - (Учебники для вузов. Специальная литература).

Дополнительная литература

Акимов, О. Е. Дискретная математика: логика, группы, графы, фракталы: учебное пособие / О. Е. Акимов. - Москва: Издатель Акимова, 2005. - 656 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок действий.
- 2. Сформулируйте правила

<u>Практическое занятие №4</u> Нахождение кратчайших путей. Алгоритм Дейкстры. Алгоритм Беллмана-Мура. Алгоритм нахождения максимального пути.

Цель: исходя из определений, получить необходимые формулы

Задание: применить полученные формулы для решения задач

Порядок выполнения:

- 1) построить граф
- 2) применить алгоритм Дейкстры

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

- 1) По заданной матрице весов Ω графа G найти величину минимального пути
- 2)Восстановить сам путь от вершины x_1 до вершины x_6 или x_7 по алгоритму Дейкстры.

$$A = \begin{pmatrix} -5 & 6 & -14 & -14 \\ -4 & 5 & -4 & 5 \\ -4 & -15 & 4 & 5 \\ -4 & -9 & -5 & 5 \\ -4 & -4 & -4 & -4 \end{pmatrix}$$

5 вариант

$$A = \begin{pmatrix} - & - & - & - & 8 & 5 & 6 \\ - & - & 4 & - & - & 7 & 12 \\ - & - & - & 4 & 5 & 6 & 8 \\ - & - & - & - & - & 1 & 2 \\ 12 & - & - & - & - & 5 & 8 \\ - & - & - & - & - & - & - & 14 \\ - & - & - & - & - & - & - & - & - \end{pmatrix}$$

7 вариант.

9 вариант

$$A = \begin{pmatrix} -4 & 6 & - & - & - \\ - & -5 & 6 & 5 & - \\ - & - & -5 & 5 & 8 \\ 4 & - & - & 8 & - \\ - & - & - & - & 7 \\ - & - & - & - & - & - \end{pmatrix}$$

4 вариант.

$$A = \begin{pmatrix} -5 & 6 & - & - & - \\ -8 & 7 & 5 & - \\ - & -6 & -5 \\ 8 & - & - & -14 \\ - & 4 & - & - \\ - & - & - & - & - \end{pmatrix}$$

6 вариант

$$A = \begin{pmatrix} - & 5 & 8 & 7 & 18 & - \\ - & - & 11 & - & - & - \\ - & - & - & - & - & 17 \\ - & 10 & 12 & - & 6 & - \\ - & 7 & 8 & - & - & 11 \\ - & - & - & - & - & - \end{pmatrix}$$

8 вариант.

$$A = \begin{pmatrix} - & - & - & - & 8 & 5 & 6 \\ - & - & 12 & - & - & 7 & 12 \\ - & - & - & 4 & 5 & 6 & 8 \\ - & - & - & - & - & 1 & 2 \\ 12 & - & - & - & - & 15 & 8 \\ - & - & - & - & - & - & 14 \\ - & - & - & - & - & - & - & - \end{pmatrix}$$

10 вариант

$$A = \begin{pmatrix} - & - & - & - & 8 & 5 & 6 \\ - & - & 5 & - & - & 7 & 12 \\ - & - & - & 4 & 5 & 6 & 8 \\ - & - & - & - & - & 1 & 2 \\ 12 & - & - & - & - & 14 & 8 \\ - & - & - & - & - & - & 24 \\ - & - & - & - & - & - & - & - \end{pmatrix}$$

$$A = \begin{pmatrix} - & - & - & - & 8 & 5 & 6 \\ - & - & 4 & - & - & 7 & 12 \\ - & - & - & 16 & 5 & 6 & 8 \\ - & - & - & - & - & 1 & 2 \\ 15 & - & - & - & - & 5 & 8 \\ - & - & - & - & - & - & 14 \\ - & - & - & - & - & - & - & - \end{pmatrix}$$

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. - 2-е изд., испр. и доп. - Санкт-Петербург: Лань, 2010. - 368 с. - (Учебники для вузов. Специальная литература).

Дополнительная литература

Белоусов, А. И. Дискретная математика: учебник для вузов / А. И. Белоусов, С. Б. Ткачев; Под ред. В. С. Зарубина. - 3-е изд. - Москва : МГТУ им. Н.Э. Баумана, 2004. - 744 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок действий
- 2. Сформулируйте правила

<u>Практическое занятие №5</u> Деревья. Задача об остове экстремального веса. Обходы графов, фундаментальные циклы.

<u>Цель</u>: исходя из определений, получить необходимые формулы

Задание: применить полученные формулы для решения задач

Порядок выполнения:

- 1) построить граф
- 2) находя минимальные расстояния между вершинами графа, построить минимальный остов

2 вариант

3) найти его вес

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1 вариант.

1)Для графа, заданного матрицей весов, построить минимальный по весу остов и найти его вес.

$$A = \begin{pmatrix} -&10&-&5&-&-&14\\ 10&-&6&2&4&8&-\\ -&6&-&3&1&1&-\\ 5&2&3&-&6&-&3\\ -&4&1&6&-&5&-\\ -&8&1&-&5&-&2\\ 14&-&-&3&-&2&- \end{pmatrix}$$

$$A = \begin{pmatrix} -&7&15&12&-&10&-\\ 7&-&13&9&-&-&8\\ 15&13&-&7&15&7&-\\ 12&9&7&-&9&-&11\\ -&-&15&9&-&10&-\\ 10&-&7&-&10&-&12\\ -&8&-&11&-&12&- \end{pmatrix}$$

$$A = \begin{pmatrix} -&10&11&-&14&-&12\\ 10&-&10&9&-&-&7\\ 11&10&-&12&10&-&6\\ -&9&12&-&9&12&-\\ 14&-&10&9&-&11&12\\ -&-&-&12&11&-&-\\ 12&7&6&-&12&-&- \end{pmatrix}$$

$$A = \begin{pmatrix} -&3&5&-&6&-&-&3\\ 3&-&10&6&8&-&4\\ 5&10&-&5&7&-&9\\ -&6&5&-&8&7&-&6\\ 8&7&8&-&9&11\\ -&-&-&7&9&-&-&-\\ -&4&9&-&11&-&-&-\\ 5&вариант.$$

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. - 2-е изд., испр. и доп. - Санкт-Петербург: Лань, 2010. - 368 с. - (Учебники для вузов. Специальная литература).

Дополнительная литература

Белоусов, А. И. Дискретная математика: учебник для вузов / А. И. Белоусов, С. Б. Ткачев; Под ред. В. С. Зарубина. - 3-е изд. - Москва : МГТУ им. Н.Э. Баумана, 2004. - 744 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок действий
- 2. Сформулируйте правила

<u>Практическое занятие №6</u> Планарные графы. Хроматические графы. Раскраска графов. Минимальная раскраска. Составление расписаний.

Trimin Maribilan packpacka. Coctabhenne pacimeannn.

Цель: исходя из определений, получить необходимые формулы

Задание: применить полученные формулы для решения задач

Порядок выполнения:

- 1) построить граф, вершинам которого соответствуют занятия
- 2) определить минимальную раскраску графа

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1)Составить оптимальное по времени расписание занятий.

AD CFE

1 вариант.

Дисциплины

Группа	1	2	3
Дисциплины	A D C E B	A D C F	B C F E
2 вариант.			
Группа	1	2	3

A D C F

B D F E

3 в	ариант.
-----	---------

1	2	3					
A D C F B	A D F G	B C G E					
4 вариант.							
1	2	3					
A D C G B	A D C F	B C F E					
1	2	3					
A D C B	A D E C F	B C F E					
1	2	3					
A D C F	A D E C F	B C F E					
1	2	3					
A E C B	A D E F	B C F E D					
1	2	3					
A C DBF	A D E F	B C F E					
1	2	3					
A E C D B	A D E F	B C F E					
1	2	3					
A E D B	A D C F	B C F E					
	1	A D C F B A D F G 1 2 A D C G B A D C F A D C B A D E C F A D C F A D E C F A D E C F A D E F A C D B F A D E F A E C D B F A D E F A E C D B A D E F					

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. - 2-е изд., испр. и доп. - Санкт-Петербург: Лань, 2010. - 368 с. - (Учебники для вузов. Специальная литература).

Дополнительная литература

Белоусов, А. И. Дискретная математика: учебник для вузов / А. И. Белоусов, С. Б. Ткачев; Под ред. В. С. Зарубина. - 3-е изд. - Москва : МГТУ им. Н.Э. Баумана, 2004. - 744 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок действий
- 2. Сформулируйте правила

<u>Практическое занятие №7</u> Потоки в сетях. Теорема Форда-Фалкерсона. Нахождение максимального потока. Минимальный разрез.

Цель: исходя из определений, получить необходимые формулы

Задание: применить полученные формулы для решения задач

Порядок выполнения:

- 1) построить граф
- 2) найти максимальный поток
- 3) найти минимальный разрез

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1) По матрице пропускных способностей найти максимальный поток от вершины x_1 до вершины x_7 по алгоритму Форда-Фалкерсона и указать минимальный разрез.

1 вариант.

2 вариант

$$A = \begin{pmatrix} - & 10 & - & 5 & - & - & 14 \\ 10 & - & 6 & 2 & 4 & 8 & - \\ - & 6 & - & 3 & 1 & 1 & - \\ 5 & 2 & 3 & - & 6 & - & 3 \\ - & 4 & 1 & 6 & - & 5 & - \\ - & 8 & 1 & - & 5 & - & 2 \\ 14 & - & - & 3 & - & 2 & - \end{pmatrix}$$

$$A = \begin{pmatrix} - & 7 & 15 & 12 & - & 10 & - \\ 7 & - & 13 & 9 & - & - & 8 \\ 15 & 13 & - & 7 & 15 & 7 & - \\ 12 & 9 & 7 & - & 9 & - & 11 \\ - & - & 15 & 9 & - & 10 & - \\ 10 & - & 7 & - & 10 & - & 12 \\ - & 8 & - & 11 & - & 12 & - \end{pmatrix}$$

$$A = \begin{pmatrix} -&10&11&-&14&-&12\ 10&-&10&9&-&-&7\ 11&10&-&12&10&-&6\ -&9&12&-&9&12&-\ 14&-&10&9&-&11&12\ -&-&-&12&11&-&-\ 12&7&6&-&12&-&-\ 5$$
 вариант.

$$A = \begin{pmatrix} -8 & -10 & 13 & -11 \\ 8 & -7 & 8 & -15 & -15 \\ -7 & --19 & 10 & 15 \\ 10 & 8 & --9 & -6 \\ 13 & -19 & 9 & -8 & -12 \\ -15 & 10 & -8 & -12 \end{pmatrix}$$

- 15 6 - 12

$$A = \begin{pmatrix} -3 & 8 & -3 & 6 & -3 \\ 3 & -7 & 6 & -4 & 4 \\ 8 & 7 & -4 & 6 & -10 \\ -6 & 4 & -5 & 7 & -4 \\ 3 & -6 & 5 & -8 & 9 \\ 6 & -7 & 8 & -4 \\ -4 & 10 & -9 & -4 \end{pmatrix}$$

9вариант

$$A = \begin{pmatrix} - & 10 & 11 & - & 14 & - & 12 \\ 10 & - & 10 & 9 & - & - & 7 \\ 11 & 10 & - & 12 & 10 & - & 6 \\ - & 9 & 12 & - & 9 & 12 & - \\ 14 & - & 10 & 9 & - & 11 & 12 \\ - & - & - & 12 & 11 & - & - \\ 12 & 7 & 6 & - & 12 & - & - \end{pmatrix}$$

4 вариант

$$A = \begin{pmatrix} -3 & 5 & -6 & -- \\ 3 & -10 & 6 & 8 & -4 \\ 5 & 10 & -5 & 7 & -9 \\ -6 & 5 & -8 & 7 & -6 \\ 6 & 8 & 7 & 8 & -9 & 11 \\ -- & -7 & 9 & -- \\ -4 & 9 & -11 & -- \end{pmatrix}$$

6 вариант

$$A = \begin{pmatrix} - & 6 & 8 & - & - & 7 & - \\ 6 & - & 11 & 12 & 9 & - & 5 \\ 8 & 11 & - & 7 & 8 & - & 9 \\ - & 12 & 7 & - & 6 & 5 & 10 \\ - & 9 & 8 & 6 & - & 8 & - \\ 7 & - & - & 5 & 8 & - & 7 \\ - & 5 & 9 & 10 & - & 7 & - \end{pmatrix}$$

8 вариант.

$$A = \begin{pmatrix} -&9&10&15&-&-&11\\ 9&-&14&12&-&8&15\\ 10&14&-&10&9&-&6\\ 15&12&10&-&11&12&-\\ -&-&9&11&-&12&11\\ -&8&-&12&12&-&-\\ 11&15&6&-&11&-&- \end{pmatrix}$$

10 вариант.

$$A = \begin{pmatrix} - & 3 & 5 & - & 6 & - & - \\ 3 & - & 10 & 6 & 8 & - & 4 \\ 5 & 10 & - & 5 & 7 & - & 9 \\ - & 6 & 5 & - & 8 & 7 & - \\ 6 & 8 & 7 & 8 & - & 9 & 11 \\ - & - & - & 7 & 9 & - & - \\ - & 4 & 9 & - & 11 & - & - \end{pmatrix}$$

Рекомендации по выполнению заданий и подготовке к практическому занятию:

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. - 2-е изд., испр. и доп. - Санкт-Петербург: Лань, 2010. - 368 с. - (Учебники для вузов. Специальная литература).

Дополнительная литература

Белоусов, А. И. Дискретная математика: учебник для вузов / А. И. Белоусов, С. Б. Ткачев; Под ред. В. С. Зарубина. - 3-е изд. - Москва : МГТУ им. Н.Э. Баумана, 2004. - 744 с. Контрольные вопросы для самопроверки

- 1. Каков порядок действий
- 2. Сформулируйте правила

Практическое занятие №8 Бином Ньютона и полиномиальная теорема.

<u>Цель</u>: исходя из определений, получить необходимые формулы <u>Задание</u>: применить полученные формулы для решения задач Порядок выполнения:

- 1) применить бином Ньютона
- 2) применить полиномиальную теорему

<u>Форма отчетности</u>: выполнить задание в тетради и показать преподавателю. <u>Задания для самостоятельной работы:</u>

1) определить, сколько рациональных членов содержится в разложении

Вариант 1.
$$(\sqrt{3} + \sqrt[3]{3})^{20}$$
 Вариант 2. $(\sqrt[3]{6} + \sqrt[4]{2})^{100}$ Вариант 3. $(\sqrt{2} + \sqrt[3]{5})^{30}$ Вариант 4. $(\sqrt[3]{5} - \sqrt[4]{7})^{100}$ Вариант 5. $(\sqrt{3} - \sqrt[3]{4})^{20}$ Вариант 6. $(\sqrt[3]{6} - \sqrt[4]{2})^{100}$ Вариант 7. $(\sqrt{5} + \sqrt[3]{4})^{20}$ Вариант 8. $(\sqrt[3]{6} + \sqrt[4]{2})^{100}$ Вариант 9. $(\sqrt{5} + \sqrt[3]{3})^{20}$ Вариант 10. $(\sqrt[3]{6} + \sqrt[4]{7})^{100}$

2) найти коэффициент при t^k в разложении

Вариант 1.	$(2+t^4+t^7)^{15}$	k = 17	Вариант 2. $(3+t^6+t^7)^{12}$	k = 15
Вариант 3.	$(3+t^6+t^7)^{12}$	<i>k</i> = 25	Вариант 4. $(2+t^3-t^7)^{15}$	k = 17
Вариант 5.	$(2-t^4+t^7)^{15}$	k = 26	Вариант 6. $(3+t^6+t^7)^{12}$	k = 25
Вариант 7.	$(3+t^6+t^7)^{25}$	k = 25	Вариант8 . $(t^2 + 3 + t^7)^{12}$	k = 15
Вариант 9.	$(t^2-5+t^7)^{12}$	k = 15	Вариант 10. $(t^2 + 3 - t^7)^{12}$	k = 20

Рекомендации по выполнению заданий и подготовке к практическому занятию:

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. - 2-е изд., испр. и доп. - Санкт-Петербург: Лань, 2010. - 368 с. - (Учебники для вузов. Специальная литература).

Дополнительная литература

Хаггарти, Р. Дискретная математика для программистов : учебное пособие / Р. Хаггарти; Пер. с англ. - 2-е изд., доп. - Москва : Texhocфера, 2005. - 400 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок действий
- 2. Сформулируйте правила

<u>Практическое занятие №9</u> Перестановки, сочетания, размещения. Свойства биномиальных коэффициентов.

<u>Цель</u>: исходя из определений, получить необходимые формулы <u>Задание</u>: применить полученные формулы для решения задач

Порядок выполнения:

- 1) найти сочетания, перестановки, размещения
- 2) доказать свойства биномиальных коэффициентов

Форма отчетности: выполнить задание в тетради и показать преподавателю.

Задания для самостоятельной работы:

1) вычислить

Вариант 1.
$$P_8$$
, C_{16}^{12} , A_7^3 Вариант 2. P_5 , C_{20}^{12} , A_{17}^3

Вариант 3.
$$P_6$$
, C_{15}^{12} , A_8^3 Вариант 4. P_8 , C_{16}^{12} , A_7^3

Вариант 1.
$$P_8$$
, C_{16}^{12} , A_7^3 Вариант 2. P_5 , C_{20}^{12} , A_{17}^3 Вариант 3. P_6 , C_{15}^{12} , A_8^3 Вариант 4. P_8 , C_{16}^{12} , A_7^3 Вариант 5. P_5 , C_{16}^{12} , A_{10}^3 Вариант 6. P_{10} , C_{16}^{12} , A_7^3 Вариант 7. P_{11} , C_{14}^{12} , A_7^3 Вариант 8. P_8 , C_{16}^{12} , A_7^3 Вариант 9. P_8 , C_{16}^{12} , A_{17}^3 Вариант 10. P_7 , C_{16}^{14} , A_7^5

Вариант 7.
$$P_{11}$$
, C_{14}^{12} , A_7^3 Вариант 8. P_8 , C_{16}^{12} , A_7^3

Вариант 9.
$$P_8$$
, C_{16}^{12} , A_{17}^3 Вариант 10. P_7 , C_{16}^{14} , A_7^3

3) Доказать свойства

Вариант 1.
$$\sum_{k=1}^{n} k \cdot C_n^k = n \cdot 2^{n-1}$$
 Вариант 2.
$$\sum_{k=1}^{n} k \cdot (k-1) C_n^k = n(n-1) \cdot 2^{n-2}$$

Вариант 3.
$$\sum_{k=1}^{n} (2k+1) \cdot C_n^k = (n+1) \cdot 2^n$$
 Вариант 4. $C_n^r = \sum_{k=1}^{n} C_{n-m}^k \cdot C_m^{r-k}$

Вариант 5.
$$\sum_{k=1}^{n} k \cdot (k-1) C_n^k = n(n-1) \cdot 2^{n-2}$$
 Вариант 6.
$$\sum_{k=1}^{n} k \cdot C_n^k = n \cdot 2^{n-1}$$

Вариант 7.
$$C_{2n-1}^{n-1} = \sum_{k=1}^{n} C_{2n-k-1}^{n-1}$$
 Вариант 8.
$$\sum_{k=1}^{n} (2k+1) \cdot C_{n}^{k} = (n+1) \cdot 2^{n}$$
 Вариант 9.
$$\sum_{k=1}^{n} k \cdot (k-1) C_{n}^{k} = n(n-1) \cdot 2^{n-2}$$
 Вариант 10.
$$C_{2n-1}^{n-1} = \sum_{k=1}^{n} C_{2n-k-1}^{n-1}$$

Вариант 9.
$$\sum_{k=1}^{n} k \cdot (k-1) C_n^k = n(n-1) \cdot 2^{n-2}$$
 Вариант 10. $C_{2n-1}^{n-1} = \sum_{k=1}^{n} C_{2n-k-1}^{n-1}$

Рекомендации по выполнению заданий и подготовке к практическому занятию:

Рассмотреть примеры выполнения аналогичных заданий, приведенные в лекциях, в рекомендуемых источниках, в основной и дополнительной литературе. Подготовить вопросы преподавателю.

Основная литература

Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. - 2-е изд., испр. и доп. - Санкт-Петербург : Лань, 2010. - 368 с. - (Учебники для вузов. Специальная литература).

Дополнительная литература

Хаггарти, Р. Дискретная математика для программистов: учебное пособие / Р. Хаггарти; Пер. с англ. - 2-е изд., доп. - Москва: Техносфера, 2005. - 400 с.

Контрольные вопросы для самопроверки

- 1. Каков порядок действий
- 2. Сформулируйте правила

9.2. Методические указания по выполнению контрольной работы

Контрольные работы не предусмотрены учебным планом

При выполнении приведенных выше рекомендаций подготовка к экзамену сведется к повторению изученного и совершенствованию навыков применения теоретических положений и различных методов решения к стандартным и нестандартным заданиям.

10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

- 1. Microsoft Imagine Premium: Microsoft Windows Professional 7.
- 2. Microsoft Office 2007 Russian Academic OPEN No Level.
- 3. Антивирусное программное обеспечение Kaspersky Security;
- 4. Adobe Reader.

11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Вид занятия	Наименование аудитории	Перечень основного оборудования	№ Лк, №ПЗ		
1	2	3	4		
Лк	Лекционная / семинар-	-	_		
	ская аудитория				
П3	Лекционная / семинар-	_	_		
	ская аудитория	-	_		
кр		Оборудование 10 ПК і5-			
	ЧЗ №1	uз мо1 2500/H67/4Gb (монитор TFT19			
	13 3(21	Samsung); принтер HP LaserJet	_		
		P2055D			
		Оборудование 10 ПК і5-			
CP	ЧЗ №1	2500/H67/4Gb (монитор TFT19			
Cr	-12 1/51	Samsung); принтер HP LaserJet	_		
		P2055D			

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

1. Описание фонда оценочных средств (паспорт)

№ компе-	Элемент компе-	Раздел	Тема	ФОС
тенции ОПК-3	тенции способ- ностью исполь- зовать основные законы естест- веннона- учных дисцип- лин и совре- менные инфор- мацион- но- комму- никаци- онные техноло- гии в профес- сиональ-	3. Комбина- торика (графы, сети) ты теории множеств	1.1. Множества и действия над ними. Отношения и функции. Специальные бинарные отношения. 1.2. Эквивалентные, конечные, бесконечные множества. Кардинальные числа. Аксиомы теории множеств. 2.1. Основные определения. Метрические характеристики графов. Выявление маршрутов с заданным количеством ребер. Алгоритм Уоршолла. 2.2. Нахождение кратчайших путей. Алгоритм Дейкстры. Алгоритм Беллмана-Мура. Алгоритм нахождения максимального пути. 2.3. Деревья. Задача об остове экстремального веса. Обходы графов, фундаментальные циклы. 2.4. Планарные графы. Хроматические графы. Раскраска графов. Минимальная раскраска. Составление расписаний. 2.5. Потоки в сетях. Теорема Форда-Фалкерсона. Нахождение максимального потока . Минимальный разрез. 3.1. Бином Ньютона и полиномиальная теорема. 3.2. Перестановки, сочетания, размещения. Свойства биномиальных коэффициентов.	Экзаменационный вопрос 1 Экзаменационный вопрос 2 Экзаменационный вопрос 3 Экзаменационный вопрос 4 Экзаменационный вопрос 5 Экзаменационный вопрос 6 Экзаменационный вопрос 7 Экзаменационный вопрос 8 Экзаменационный вопрос 9
	ной дея- тельности			

2. Экзаменационные вопросы

№ п/п	Компетенции		ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ	№ и наимено-
	Код	Определение	1 семестр	вание раздела
1	2	3	4	5
1	ОПК-3	способностью использовать	1 Множества и действия над ними. Отношения и функции. Специальные бинарные отношения.	1. Элементы тео- рии множеств
2		основные законы естественнона-	2 Эквивалентные, конечные, бесконечные множества. Кардинальные числа. Аксиомы теории множеств.	
3		учных дисцип- лин и современ- ные информаци-	3 Основные определения. Метрические характеристики графов. Выявление маршругов с заданным количеством ребер. Алгоритм Уоршолла.	2. Дискретные структуры (графы, сети)
4		онно- коммуникаци- онные техноло-	4 Нахождение кратчайших путей. Алгоритм Дейкстры. Алгоритм Беллмана-Мура. Алгоритм нахождения максимального пути.	
5		гии в профес- сиональной дея-	5 Деревья. Задача об остове экстремального веса. Обходы графов, фундаментальные циклы.	
6		тельности	6 Планарные графы. Хроматические графы. Раскраска графов. Минимальная раскраска. Составление расписаний.	
7			7 Потоки в сетях. Теорема Форда-Фалкерсона. Нахождение максимального потока. Минимальный разрез.	
8			8 Бином Ньютона и полиномиальная теорема.	3. Комбинаторика
9			9 Перестановки, сочетания, размещения. Свойства биномиальных коэффициентов.	

3. Описание показателей и критериев оценивания компетенций

Показатели	Оценка	Критерии
Знать (ОПК-3) - виды и специфику источников достоверной математической информации, (учебники, учебные пособия, конспекты лекций, интернет, научные статьи) основные математические понятия и методы исследования, особенности их применимости в разных научных областях, специфику математических символов. Уметь (ОПК-3)	Отлично	Свободно и уверенно находит достоверные источники информации, оперирует предоставленной информацией, отлично владеет навыками анализа и синтеза информации, знает все основные методы решения проблем, предусмотренные учебной программой, знает типичные ошибки и возможные сложности при решении той или иной проблемы и способен выбрать и эффективно применить адекватный метод решения конкретной проблемы или учебной задачи. Демонстрирует на высоком уровне навыки выполнения расчетов и вычислений. Грамотно использует при этом возможности вычислительных устройств и информационных технологий.
- осуществлять целенаправленный поиск математической информации; использовать различные источники информации в своей работе; проводить аналитические обзоры информации: структурировать, минимизировать, выделять главное, устанавливать связи между базовыми элементами на основе найденной информации выбирать оптимальный способ решения математической проблемы или задачи; анализировать полученные результаты и делать на их основе выводы.	Хорошо	В большинстве случаев способен выявить достоверные источники информации, обработать, анализировать и синтезировать предложенную информацию, выбрать метод решения проблемы и решить ее. Допускает единичные серьезные ошибки в решении проблем, испытывает сложности в редко встречающихся или сложных случаях решения проблем, не знает типичных ошибок и возможных сложностей при решении той или иной проблемы. Демонстрирует на достаточном уровне навыки выполнения расчетов и вычислений. Изредка использует при этом возможности вычислительных устройств и информационных технологий.
- грамотно применять основные математические символы, понятия и методы исследования. Владеть (ОПК-3) - приемами визуализации информации: представление в виде графиков, схем, таблиц техниками выполнения расчетов и вы-	Удовлетво- рительно	Допускает ошибки в определении достоверности источников информации. Демонстрирует на низком уровне способность применять теоретические знания к конкретному фактическому материалу. В отдельных случаях способен правильно решать только типичные, наиболее часто встречающиеся проблемы, задачи в конкретной области. Демонстрирует на низком уровне навыки выполнения расчетов и вычислений.
числений, навыками математической обработки результатов измерений и вычислений, представления результатов в требуемом виде навыками решения задач из разных областей математики навыками использования измерительных и вычислительных устройств, информационных технологий для выполнения расчетов, вычислений, составления и оформления результатов решения задач.	Неудовле- творительно	Неспособен осуществлять поиск необходимой информации, обрабатывать информацию, не имеет навыков анализа и синтеза, не знает методов решения проблем, задач, не может решать проблемы, задачи. Не владеет техникой вычислений.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности

Дисциплина Дискретная математика направлена на ознакомление обучающихся с местом и ролью математики в современном мире, мировой культуре и истории; на получение теоретических знаний и практических навыков применения системы фундаментальных математических знаний для идентификации, формулирования и решения технологических проблем в профессиональной сфере, а также осуществления поиска, хранения, обработки и анализа информации из различных источников и представления ее в соответствующем виде и для их дальнейшего использования в практической деятельности.

Изучение дисциплины Дискретная математика предусматривает:

- лекции,
- практические занятия;
- экзамен;
- самостоятельную работу студента.

В ходе освоения раздела 1 «Элементы теории множеств» студенты должны уяснить идеи, связанные с понятием абстрактного множества, и применения действий над множествами в решении задач профессиональной практики.

В ходе освоения раздела 2 «Дискретные структуры (графы, сети)» студенты осваивают основные приемы и методы построения и анализа динамических моделей.

В ходе изучения раздела 3 «Комбинаторика» студенты осваивают комбинаторные методы решения задач.

Студентам необходимо овладеть навыками и умениями применения изученных методов для разработки и реализации профессионально ориентированных проектов в последующей учебной деятельности.

В процессе изучения дисциплины рекомендуется на первом этапе обратить внимание на специфику математических текстов и умение выбирать методы решения различных задач.

Овладение ключевыми понятиями является основой усвоения учебного материала по дисциплине.

При подготовке к экзамену особое внимание необходимо уделить рекомендациям и замечаниям преподавателей, ведущих аудиторные занятия по дисциплине

В процессе проведения практических занятий происходит закрепление знаний, формирование умений и навыков применения различных методов решения стандартных математических ситуаций.

Самостоятельную работу необходимо начинать с чтения лекций и учебников.

В процессе консультации с преподавателем обучающийся выясняет наличие пробелов в знаниях и способах решения разных ситуаций.

Работа с литературой является важнейшим элементом в получении знаний по дисциплине. Прежде всего, необходимо воспользоваться списком рекомендуемой по данной дисциплине литературой. Дополнительные сведения по изучаемым темам можно найти в периодической печати и Интернете.

Предусмотрено проведение аудиторных занятий в виде разнообразных тренингов и ситуаций общения в сочетании с внеаудиторной работой.

АННОТАЦИЯ

рабочей программы дисциплины Дискретная математика

1. Цель и задачи дисциплины

Целью изучения дисциплины является: знакомство обучающихся с местом и ролью дискретной математики в современном мире, мировой культуре и истории; формирование личности обучающихся, развитие их интеллекта и способностей к логическому и алгоритмическому мышлению.

Обучение основным методам дискретной математики преследует цель развития способностей применять систему фундаментальных математических знаний для идентификации, формулирования и решения технологических проблем в области профессиональной деятельности, а также осуществлять поиск, хранение, обработку и анализ информации из различных источников и представлять ее в соответствующем виде

Задачи дисциплины состоят в том, чтобы на примерах понятий дискретной математики и ее методов продемонстрировать обучающимся действие законов материального мира, сущность научного подхода, специфику дискретной математики и ее роль в научнотехническом прогрессе, а также создать фундамент математического образования, необходимый для развития профессиональных компетенций и для изучения последующих дисциплин.

2. Структура дисциплины

2.1 Распределение трудоемкости по отдельным видам учебных занятий, включая самостоятельную работу: Лк.- 17 час., ПЗ - 34 час.; СР - 57 час.

Общая трудоемкость дисциплины составляет 144 часа, 4 зачетных единиц

- 2.2 Основные разделы дисциплины:
- 1. Элементы теории множеств
- 2. Дискретные структуры (графы, сети)
- 3. Комбинаторика

3. Планируемые результаты обучения (перечень компетенций)

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ОПК-3 способностью использовать основные законы естественнонаучных дисциплин и современные информационно-коммуникационные технологии в профессиональной деятельности
 - 4. Виды промежуточной аттестации: экзамен.

Протокол о дополнениях и изменениях в рабочей программе на 20__ - 20__ учебный год

1. В рабочую программу по дисциплине вносятся следующие дополнения:	
2. В рабочую программу по дисциплине вносятся следующие изменения:	
Протокол заседания кафедры математики № от «» 201 г.	,
Заведующий кафедрой	(Ф.И.О.)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ПО ДИСЦИПЛИНЕ

1. Описание фонда оценочных средств (паспорт)

№	Элемент				
компе-	компе-	Раздел	Тема	ФОС	
тенции	тенции				
ОПК-3	способ-		1.1. Множества и действия над ними. Отношения и	Тесты	
	ностью	T.b.I 10-	функции. Специальные бинарные отношения.		
	исполь-	1. Элементы теории мно- жеств			
	зовать	Элемен рии мн жеств	1.2. Эквивалентные, конечные, бесконечные мно-	Тесты	
	основные	J.€ gos **	жества. Кардинальные числа. Аксиомы теории		
	законы	1. E	множеств.		
	естест-				
	веннона-		2.1. Основные определения. Метрические характе-	Тесты	
	учных		ристики графов. Выявление маршрутов с заданным		
	дисцип-)bI	количеством ребер. Алгоритм Уоршолла.		
	лин и	TYI	2.2. Нахождение кратчайших путей. Алгоритм	Тесты	
	совре-	yk 1)	Дейкстры. Алгоритм Беллмана-Мура. Алгоритм		
	менные	стр	нахождения максимального пути.		
	инфор- мацион-	Дискретные структуры (графы, сети)	2.3. Деревья. Задача об остове экстремального веса.	Тесты	
	но-	тні фр	Обходы графов, фундаментальные циклы.	T.	
		кре	2.4. Планарные графы. Хроматические графы. Рас-	Тесты	
	комму- никаци-	исі)	краска графов. Минимальная раскраска. Составле-		
	онные	2. Д	ние расписаний.	T	
	техноло-	7	2.5. Потоки в сетях. Теорема Форда-Фалкерсона.	Тесты	
	гии в		Нахождение максимального потока. Минимальный		
	профес-		paspes.	Тарта	
	сиональ-	, ка	3.1. Бином Ньютона и полиномиальная теорема.	Тесты	
	ной дея-	эмс	3.2. Перестановки, сочетания, размещения. Свойст-	Тесты	
	тельности	3. Комби- наторика	ва биномиальных коэффициентов.	100151	
		<i>(</i> , –			

2. Описание показателей и критериев оценивания компетенций

Так как текущий контроль проводится в форме тестирования и предназначен для проверки знаний самими обучающимися, тест может быть зачтен или не зачтен. В дальнейшем студенты могут повторить попытки выполнить тест по той теме, где были обнаружены пробелы в его знаниях.

Показатели	Оценка	Критерии
Знать		Свободно и уверенно нахо-
(ОПК-3)		дит достоверные источники
- виды и специфику источников достоверной математиче-		информации, оперирует пре-
ской информации, (учебники, учебные пособия, конспекты		доставленной информацией,
лекций, интернет, научные статьи).		отлично владеет навыками
- основные математические понятия и методы исследова-		анализа и синтеза информа-
ния, особенности их применимости в разных научных об-		ции, знает все основные ме-
ластях, специфику математических символов.		тоды решения проблем, пре-
Уметь		дусмотренные учебной про-
(ОПК-3)		граммой, знает типичные
- осуществлять целенаправленный поиск математической		ошибки и возможные слож-
информации; использовать различные источники инфор-		ности при решении той или
мации в своей работе; проводить аналитические обзоры	Зачтено	иной проблемы и способен
информации: структурировать, выделять главное, устанав-		выбрать и эффективно при-
ливать связи между базовыми элементами.		менить адекватный метод
- на основе найденной информации выбирать оптимальный		решения конкретной про-
способ решения математической проблемы или задачи;		блемы или учебной задачи.
анализировать полученные результаты и делать на их ос-		Демонстрирует на высоком
нове выводы.		уровне навыки выполнения
- грамотно применять основные математические символы,		расчетов и вычислений. Гра-
понятия и методы исследования.		мотно использует при этом
Владеть		возможности вычислитель-
(ОПК-3)		ных устройств и информаци-
- приемами визуализации информации: представление в		онных технологий.
виде графиков, схем, таблиц.		Неспособен осуществлять
- техниками выполнения расчетов и вычислений, навыками		поиск необходимой инфор-
математической обработки результатов измерений и вы-		мации, обрабатывать инфор-
числений, представления результатов в требуемом виде.		мацию, не имеет навыков
- навыками решения задач из разных областей математики.	Не зачтено	анализа и синтеза, не знает
- навыками использования измерительных и вычислитель-		методов решения проблем,
ных устройств, информационных технологий для выполне-		задач, не может решать про-
ния расчетов, вычислений, составления и оформления ре-		блемы, задачи. Не владеет
зультатов решения задач.		техникой вычислений.

Фонд тестовых заданий

по дисциплине

Б1.Б.7 Дискретная математика

ТЕМАТИЧЕСКАЯ СТРУКТУРА ТЕСТОВ

N	Наименование	N	Тема задания	
раздела	радела	задания		
1.	Элементы теории множеств	1,2	Множества и действия над ними. Отношения и функции. Специальные бинарные отношения	
		3,4	Эквивалентные, конечные, бесконечные множества. Кардинальные числа. Аксиомы теории множеств.	
2.	Дискретные структуры (графы, сети)	5	Основные определения. Метрические характеристики графов. Выявление маршрутов с заданным количеством ребер. Алгоритм Уоршолла.	
		6	Нахождение кратчайших путей. Алгоритм Дейкстры. Алгоритм Беллмана-Мура. Алгоритм нахождения максимального пути.	
		7	Деревья. Задача об остове экстремального веса. Об- ходы графов, фундаментальные циклы.	
		8	Планарные графы. Хроматические графы. Раскраска графов. Минимальная раскраска. Составление расписаний.	
		9	Потоки в сетях. Теорема Форда-Фалкерсона. Нахождение максимального потока. Минимальный разрез.	
3.	Комбинаторика	10	Бином Ньютона и полиномиальная теорема.	
		11	Перестановки, сочетания, размещения. Свойства биномиальных коэффициентов.	

Тестовые задания

1. Пусть $A = \{x \in N | 0 < x \le 7\}, B = \{x \in N | -3 < x < 4\}, C = \{x \in N | x^3 - 5x^2 - x + 5 = 0\}$ Указать множества:

a)
$$B \cup C$$

1)
$$\{1,2,4\}$$
 2) $\{-2,4,5\}$ 3) $\{-2,0,6\}$

B)
$$A \cap B \cap C$$

c)
$$A \cup B \cup C$$

d)
$$B \times C$$

e) $C \times B$

2. Дано отношение $P = \{(x, y) | x, y \in N \ u \ x$ делит $y \}$

Какое утверждение верное:

- 1) отношение рефлексивное и симметричное
- 2) отношение рефлексивное и транзитивное
- 3) отношение нерефлексивное и антисимметричное
- 4) отношение нетранзитивное и рефлексивное
- 3. Пусть A и B конечные множества, состоящие их n и m элементов соответственно. Сколько существует бинарных отношений между элементами этих множеств:

1)
$$n+m$$

$$2)$$
 $n-m$

4. Пусть A и B - конечные множества, состоящие их n и m элементов соответственно Сколько имеется функций из A в B:

$$2) n^m$$

3)
$$2^n$$
 4) 2^n

5. Задана матрица смежности. Сколько существует маршругов длины три?

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

6. По заданной матрице весов Ω графа G найти величину минимального пути

$$A = \begin{pmatrix} - & 4 & 6 & - & - & - \\ - & - & 5 & 6 & 5 & - \\ - & - & - & 5 & 5 & 8 \\ 4 & - & - & - & 8 & - \\ - & - & - & - & - & 7 \\ - & - & - & - & - & - \end{pmatrix}$$

7. Для графа, заданного матрицей весов, построить минимальный по весу остов и найти его вес.

$$A = \begin{pmatrix} -&10&-&5&-&-&14\\ 10&-&6&2&4&8&-\\ -&6&-&3&1&1&-\\ 5&2&3&-&6&-&3\\ -&4&1&6&-&5&-\\ -&8&1&-&5&-&2\\ 14&-&-&3&-&2&- \end{pmatrix}$$
 1) 24 2) 25 3) 35 4) 50
8. Составить оптимальное по времени расписание занятий.

8. Составить оптимальное по времени расписание занятий.

Группа	1	2	3
Дисциплины	A D C E B	A D C F	B C F E

- 1) AD,CED 2) AD, DC, CF 3) DC, AE, FC
- 9. По матрице пропускных способностей найти максимальный поток от вершины x_1 до вершины x_7 по алгоритму Форда-Фалкерсона и указать минимальный разрез.

$$A = \begin{pmatrix} -10 & -5 & - & -14 \\ 10 & -6 & 2 & 4 & 8 & - \\ -6 & -3 & 1 & 1 & - \\ 5 & 2 & 3 & -6 & -3 \\ -4 & 1 & 6 & -5 & - \\ -8 & 1 & -5 & -2 \\ 14 & -3 & -2 & - \end{pmatrix}$$
1) 45 2) 47 3) 56 4) 43

- 10. Определить, сколько рациональных членов содержится в разложении $(\sqrt{3} + \sqrt[3]{3})^{20}$
- 1) 12 2) 14 3) 16 4) 20
- 11. Вычислить P_8 , C_{16}^{12} , A_7^3
- 1) 134, 245, 345 2) 345, 236, 456 3) 345, 654, 234

Программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 09.03.03 Прикладная информатика от «12» марта 2015г. №207

<u>для набора 2014 года:</u> и учебным планом ФГБОУ ВО «БрГУ» для заочной формы обучения от 03.07.2018г. №413;

<u>для набора 2015 года:</u> и учебным планом ФГБОУ ВО «БрГУ» для очной формы обучения от 03.07.2018г. №413, заочной формы обучения от 03.07.2018г. №413;

<u>для набора 2016 года:</u> и учебным планом ФГБОУ ВО «БрГУ» для очной формы обучения от 05.05.2016г. №342;

для набора 2017 года: и учебным планом ФГБОУ ВО «БрГУ» для очной формы обучения от 06.03.2017г. №125, заочной формы обучения от 06.03.2017г. №125.

<u>для набора 2018 года:</u> и учебным планом ФГБОУ ВО «БрГУ» для очной формы обучения от 12.03.2018г. №130 , заочной формы обучения от 12.03.2018г. №130.

Программу составили:

Т.Г. Багинова, доцент кафедры «МиФ», кандидат технических наук	
Емельянова Н.В., старший преподаватель кафедры «МиФ»	
Рабочая программа рассмотрена и утверждена на заседании кафедры МиФ от «21» ноября 2018 г., протокол №3 Ваведующий кафедрой МиФ	О.И. Медведева
СОГЛАСОВАНО:	
И.о. зав. базовой кафедрой МиИТ	Е.И. Луковникова
Директор библиотеки	Т.Ф.Сотник
Рабочая программа одобрена методической комиссией Естественнонаучног от «20» декабря 2018 г., протокол №4 Председатель методической комиссии факультета	
СОГЛАСОВАНО:	
Начальник учебно-методического управления	Г.П.Нежевец
Регистрационный №	
(Memodunecvuŭ omden)	