ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БРАТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра Управление в технических системах

УТЕ	ЗЕРЖД	ĮАЮ:
Про	ректор	по учебной работе
		_ Е.И. Луковникова
«	>>	201 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ДИСКРЕТНАЯ МАТЕМАТИКА

Б1.Б.07

НАПРАВЛЕНИЕ ПОДГОТОВКИ

11.03.02 Инфокоммуникационные технологии и системы связи

ПРОФИЛЬ ПОДГОТОВКИ

Многоканальные телекоммуникационные системы

Программа академического бакалавриата

Квалификация (степень) выпускника: бакалавр

1.	СОДЕРЖАНИЕ ПРОГРАММЫ ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	Стр. 3
2.	МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	3
3.	РАСПРЕДЕЛЕНИЕ ОБЪЕМА ДИСЦИПЛИНЫ 3.1 Распределение объёма дисциплины по формам обучения	
4.	СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	5
4.	 4.1 Распределение разделов дисциплины по видам учебных занятий	5 6 21
5.	МАТРИЦА СООТНЕСЕНИЯ РАЗДЕЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ К ФОРМИРУЕМЫМ В НИХ КОМПЕТЕНЦИЯМ И ОЦЕНКЕ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ	23
6.	ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИ	HE 24
7.	ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	24
8.	ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО – ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ» НЕОБХОДИМЫ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	IX 24
9.	МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	25
	9.1. Методические указания для обучающихся по выполнению лабораторных раб семинаров / практических работ	
10.	. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	31
11.	ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО	21
П	ДИСЦИПЛИНЕ	
	Іриложение 2. Аннотация рабочей программы дисциплины	36
П	Гриложение 3. Протокол о дополнениях и изменениях в рабочей программе	37

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Вид деятельности выпускника

Дисциплина охватывает круг вопросов, относящихся к к научно-исследовательскому виду профессиональной деятельности выпускника в соответствии с компетенциями и видами деятельности, указанными в учебном плане.

Цель дисциплины

Формирование у обучающихся фундаментальных знаний в области дискретного анализа и выработка практических навыков по применению дискретной математики в инфокоммуникационных технологиях.

Задачи дисциплины

Состоят в том, чтобы на примерах понятий, методов и алгоритмов дискретной математики продемонстрировать обучающимся действие законов материального мира, а также в формировании знаний и умений, которые образуют теоретический фундамент, необходимый для корректной постановки и решения проблем обработки информации в инфокоммуникационных технологиях и системах связи.

Код компетенции	Содержание компетенций		Перечень планируемых результатов обучения по			
1	2		дисциплине 3			
ОПК-3	способность владеть методами, способами и	основными средствами переработки	Знать: - законы и методы накопления, передачи и обработки информации с помощью компьютера; основные физические явления; Уметь: - использовать возможности вычислительной техники и программного обеспечения; Владеть: - основными методами работы на компьютере с использованием универсальных прикладных программ.			

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина Б1.Б.7 Дискретная математика относится к базовой части.

Дисциплина Дискретная математика базируется на знаниях, полученных при изучении учебной дисциплины основной общеобразовательной программы: Б1.Б.6 Математический анализ.

Основываясь на изучении перечисленной дисциплины, Дискретная математика представляет основу для изучения дисциплин: Б1.Б.16 Вычислительная техника и информационные технологии, Б1.В.8 Численные методы.

Такое системное междисциплинарное изучение направлено на достижение требуемого ФГОС уровня подготовки по квалификации бакалавр.

3. РАСПРЕДЕЛЕНИЕ ОБЪЕМА ДИСЦИПЛИНЫ

3.1. Распределение объема дисциплины по формам обучения 2015-2017 год набора

2010 2017 1			Трудоемкость дисциплины в часах								
Форма обучения	Курс	Семестр	Всего часов	Аудиторных часов	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	Контроль ная работа	Вид промежу точной аттестац ии	
1	2	3	4	5	6	7	8	9	10	11	
Очная	2	3	108	51	17	-	34	57	кр	зачет	
Заочная	-	-	-	-	-	-	-	-	-	-	
Заочная (ускоренное обучение)	-	-	-	-	-	-	-	-	-	-	
Очно-заочная	-	-	-	-	-	-	-	-	-	-	

2018 год набора

2010 год п			Тр	удоем	кость	дисципл	ины в ч	acax			
Форма обучения	Курс	Семестр	Всего часов	Аудиторных часов	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	Контроль ная работа	Вид промежу точной аттестац ии	
1	2	3	4	5	6	7	8	9	10	11	
Очная	2	3	108	51	17	-	34	57		зачет	
Заочная	-	-	-	-	-	-	-	-	-	-	
Заочная (ускоренное обучение)	-	-	-	-	-	-	-	-	-	-	
Очно-заочная	-	-	-	-	-	-	-	-	-	-	

3.2. Распределение объема дисциплины по видам учебных занятий и трудоемкости

3.2. Гаспределение объема дисципли	шы по вида	m y icondix sanninn n i	рудосткости
Вид учебных занятий	Трудо- емкость (час.)	в т.ч. в интерактивной, активной, иннова- циионной формах, (час.)	Распределение по семестрам, час
1	2	3	4
I. Контактная работа обучающихся с преподавателем (всего)	51	12	51
Лекции (Лк)	17	4	17

Практические занятия (ПЗ)		34	8	34
Контрольная работа (кр)		+	-	+
Групповые (индивидуальные) консул	ьтации	+	-	+
II. Самостоятельная работа обучаю (СР)	щихся	57	-	57
Подготовка к практическим занятиям]	47	-	47
Подготовка к зачету		10	-	10
III. Промежуточная аттестация зач	ет	+	-	+
Общая трудоемкость дисциплины	час	108	-	108
	зач. ед.	3	-	3

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Распределение разделов дисциплины по видам учебных занятий для очной формы обучения:

<u>№</u> раз-	бучения: Наименование	Трудоем-	Виды учебных занятий, включая самостоятельную работу обучающихся и трудоемкость; (час.)				
дела и	раздела и	кость,	учебн	самостоя			
темы	тема дисциплины	(час.)	лекции	практические занятия	тельная работа обучаю- щихся		
1	2	3	4	5	6		
1.	Теория множеств и отношений.	29	4	11	14		
1.1.	Элементы и множества. Задание множеств. Сравнение множеств. Операции над множествами. Свойства операций над множествами.	15	3	5	7		
1.2.	Булеан. Упорядоченные пары. Прямое произведение множеств.	14	1	6	7		
2.	Булева алгебра и элементы математической логики.	31	5	11	15		
2.1.	Функции алгебры логики. Существенные и несущественные переменные. Элементарные булевы функции.	15	2	8	5		
2.2.	Свойства элементарных функций. Принципы двойственности.	6	1	-	5		
2.3.	Разложение булевой функции по переменным. Совершенные дизъюктивная и конъюктивная нормальные формы.	10	2	3	5		
3.	Комбинаторика.	30	4	12	14		
3.1.	Элементы и основные правила комбинаторики.	3	1	-	2		
3.2.	Перестановки без повторений и с повторениями.	9	1	4	4		
3.3.	Размещения без повторений и с повторениями.	9	1	4	4		
3.4	Сочетания без повторений и с повторениями	9	1	4	4		
4.	Основы теории кодирования.	18	4	-	14		
4.1.	Код Хэмминга.	10	3	-	7		
4.2.	Самокорректирующиеся коды.	8	1	-	7		
	ИТОГО	108	17	34	57		

4.2. Содержание дисциплины, структурированное по разделам и темам

Раздел 1. Теория множеств и отношений.

Тема 1.1 Элементы и множества. Задание множеств. Сравнение множеств. Операции над множествами. Свойства операций над множествами.

Понятие множества принадлежит к числу основных, неопределяемых понятий математики. Оно не сводится к другим, более простым понятиям. Поэтому его нельзя определить, а можно лишь пояснить, указывая синонимы слова «множество» и приводя примеры множеств: множество — набор, совокупность, собрание каких-либо объектов (элементов), обладающих общим для всех их характеристическим свойством.

Примеры множеств:

- 1) множество студентов в данной аудитории;
- 2) множество людей, живущих на нашей планете в данный момент времени;
- 3) множество точек данной геометрической фигуры;
- 4) множество чётных чисел;

Основоположник теории множеств немецкий математик Георг Кантор (1845-1918) писал: «Множество есть многое, мыслимое нами как единое». И хотя это высказывание учёного не является в полном смысле логическим определением понятия множества, но оно верно поясняет, что когда говорят о множестве, то имеют в виду некоторое собрание объектов, причём само это собрание рассматривается как единое целое, как один (новый) объект.

Объекты, составляющие данное множество, называют его элементами.

Множество обычно обозначают большими латинскими буквами, а элементы множества — малыми латинскими буквам. Если элемент, а принадлежит множеству A, то пишут: а A, а если а не принадлежит A, то пишут: а A.

Например, пусть N–множество натуральных чисел. Тогда 5N, но N, N. Если A — множество корней уравнения x2 -5x+6=0, то 3 A, a 4A.

В математике часто исследуются так называемые числовые множества, т.е. множества, элементами которых являются числа. Для самых основных числовых множеств утвердились следующие обозначения:

- N- множество всех натуральных чисел;
- Z- множество всех целых чисел;
- Q- множество всех рациональных чисел;
- R- множество всех действительных чисел.

Способы задания множества

Множество А считается заданным, если относительно любого объекта а можно установить, принадлежит этот объект множеству А или не принадлежит; другими словами, если можно определить, является ли а элементом множества А или не является. Существуют два основных способа задания множества:

- 1) перечисление элементов множества;
- 2) указание характеристического свойства элементов множества, т.е. такого свойства, которым обладают все элементы данного множества и только они.

Первым способом особенно часто задаются конечные множества. Например, множество студентов учебной группы задаётся их списком. Множество, состоящее из элементов a, b, c, ... ,d, обозначают с помощью фигурных скобок: $A=\{a; b; c; ...;d\}$. Множество корней уравнения x2 -5x+6=0 состоит из двух чисел 2 и 3: $A=\{2; 3\}$. Множество В целых решений неравенства -2 < x < 3 состоит из чисел -1, 0, 1, 2, поэтому $B=\{-1; 0; 1; 2\}$.

Второй способ задания множества является более универсальным. Множество элементов x, обладающих данным характеристическим свойством P(x), также записывают с помощью фигурных скобок: $X=\{x\mid P(x)\}$, и читают: множество X состоит из элементов x, таких, что выполняется свойство P(x). Например, $A=\{x\mid x2$ -5x+6=0 $\}$. Решив уравнение x2 -5x+6=0, мы можем записать множество X первым способом: X=2x=3x=4x=4x=5x=6.

Другой пример: $X = \{x \mid -1 \le x < 4, x Z\}$, т.е. X есть множество целых чисел x, таких, что $-1 \le x < 4$, значит, по-другому: $X = \{-1; 0; 1; 2; 3\}$.

Рассмотрим и такой пример: $F = \{f \mid |fr(x)| \le 1, 1 < x < 2\}$, т.е. F- множество функций f, производная которых в интервале (1; 2) не превосходит по абсолютной величине числа 1.

Может случиться, что характеристическим свойством, определяющим множество A, не обладает ни один объект. Тогда говорят, что множество A — пустое (не содержит ни одного элемента) и пишут: A= III.

Например, $A=\{x \mid xI+9=0, xR\}$ —множество действительных чисел x, таких, что xI+9=0-пустое множество, т.к. таких действительных чисел нет.

Включение и равенство множеств

Если для двух множеств X и Y одновременно имеют место два включения X Y и Y X, т.е. X есть подмножество множества Y и Y есть подмножество множества X и Y состоят из одних и тех же элементов. Такие множества X и Y называют равными и пишут: X=Y. Например, если $A=\{2;3\}$, а $B=\{x\mid xI-5x+6=0\}$, то A=B.

Если X Y, но $X \neq Y$, т.е. существует хотя бы один элемент множества Y, не принадлежащий X, то говорят, что X есть собственное подмножество множества Y, и пишут: X Y. Например: NZ, ZQ, QR. Далее нам потребуется множество, которое содержит в качестве своего подмножества любое другое множество. Такое «всеобъемлющее» множество будем называть универсальным и обозначать буквой U.

Операции над множествами

С помощью нескольких множеств можно строить новые множества или, как говорят, производить операции над множествами. Мы рассмотрим следующие операции над множествами: объединение, пересечение, разность множеств, дополнение множества.

Объединение множеств

Объединением AB множеств A и B называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств A или B.

Символическая запись этого определения: $A B = \{x \mid xA \text{ или } xB\}$.

Здесь союз «или» понимается в смысле «неразделительного или», т.е. не исключается, что х может принадлежать и А и В. Отметим, что в таком случае элемент х, входящий в оба множества А и В, входит в их объединение только один раз (поскольку для множества не имеет смысла говорить о том, что элемент входит в него несколько раз).

Если множество A определяется характеристическим свойством P(x), а множество B — характеристическим свойством Q(x), то A B состоит из всех элементов, обладающих, по крайней мере, одним из этих свойств.

Примеры объединений двух множеств:

- 1) Пусть $A=\{2; 5; 7\}$, $B=\{3; 5; 6\}$. Тогда $A B = \{2; 3; 5; 6; 7\}$.
- 2) Пусть A=[-1/4; 2], B=[-2/3; 7/4]. Тогда А В=[-2/3; 2].
- 3) Пусть $A = \{x \mid x = 8k, k Z\}, B = \{x \mid x = 8n 4, n Z\}.$ Тогда $A B = \{x \mid 4m, mZ\}.$

Пересечение множеств

Пересечением $A \cap B$ множеств A и B называется множество, состоящее из всех элементов, принадлежащих одновременно каждому из множеств A и B.

Символическая запись этого определения: $A \cap B = \{x \mid xA \text{ и } x \text{ B}\}.$

Если множество A задается характеристическим свойством P(x), а множество B-свойством Q(x), то в $A \cap B$ входят элементы, одновременно обладающие и свойством P(x), и свойством Q(x).

Примеры пересечений двух множеств:

- 1) Пусть $A=\{2, 5, 7, 8\}$, $B=\{3, 5, 6, 7\}$. Тогда $A \cap B=\{5, 7\}$.
- 2) Пусть A=[-1/4; 7/4], B=[-2/3; 3/2]. Тогда $A \cap B=[-1/4; 3/2]$.

- 3) Пусть $A = \{x \mid x=2k, k \in Z\}$, $B = \{x \mid x=3n, n \in Z\}$. Тогда $A \cap B = \{x \mid x=6m, m Z\}$.
- 4) Пусть A- множество всех прямоугольников, B-множество всех ромбов. Тогда $A \cap B$ множество фигур, одновременно являющихся и прямоугольниками, и ромбами, т.е. множество всех квадратов.

Разность множеств

Разностью $A \setminus B$ множеств A и B называется множество, состоящее из всех элементов множества A, которые не принадлежат множеству B, т.е.

$$A \setminus B = \{x \mid x \land u \land xB\},\$$

Примеры разностей множеств:

- 1. Пусть $A = \{1; 2; 5; 7\}$, $B = \{1; 3; 5; 6\}$. Тогда $A \setminus B = \{2; 7\}$, a $B \setminus A = \{3; 6\}$.
- 2. Пусть A=[-1/4;2], B=[-2/3; 7/4]. Тогда А\В=(7/4;2], а В\А=[-2/3; -1/4).
- 3. Пусть A множество всех четных целых чисел, B множество всех целых чисел, делящихся на 3. тогда $A \setminus B$ множество всех четных целых чисел, которые не делятся на 3, а $B \setminus A$ —множество всех нечетных целых чисел, кратных трем.

Дополнение множества

Пусть множество A и B таковы, что AB. Тогда дополнением множества A до множества B называется разность B\A. В этом случае применяется обозначение CB A=B\A. Если в качестве множества B берётся универсальное множество U, то применяется обозначение CA=CU A=U\A и такое множество просто называют дополнением множества A. Таким образом, символическая запись определения дополнения множества будет следующей: $CA=\{x\mid x\;A\}.$

Свойства операций над множествами.

1. Идемпотентность пересечения, объединения.

$$A \cap A = A A \cup A = A$$

2. Коммутативность пересечения, объединения.

$$A \cap B = B \cap A A \cup B = B \cup A$$

3. Ассоциативность пересечения, объединения.

$$(A \cap B) \cap C = A \cap (B \cap C) (A \cup B) \cup C = A \cup (B \cup C)$$

4. Законы поглощения.

$$(A \cap B) \cup A = A (A \cup B) \cap A = A$$

5. Свойства пустого множества.

$$A \cap \varnothing = \varnothing A \cup \varnothing = A$$

6. Свойства универсума.

$$A \cap U = A A \cup U = U$$

7. Инволютивность.

$$\overline{A} = A$$

8. Законы де Моргана.

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \quad \overline{A \cup B} = \overline{A} \cap \overline{B}$$

9. Свойства дополнения.

$$A \cap \overline{A} = \emptyset A \cup \overline{A} = U$$

10. Выражения для разности.

$$A \setminus B = A \cap \overline{B}$$

Тема 1.2 Булеан. Упорядоченные пары. Прямое произведение множеств.

Множество всех подмножеств множества M называется булеаном или мощностью и обозначается P(M):

$$P(M) = \{A \mid A \subseteq M\}$$

Например, пусть $A = \{1,2,3\}$, тогда

$$P(A) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}$$

Упорядоченные пары. Прямое произведение множеств.

Если а и b - объекты, то через <a, b> обозначим упорядоченную пару. Равенство упорядоченных пар определяется следующим образом:

$$= \iff a = c \text{ и } b = d.$$

Пусть А и В - множества. Прямым декартовым произведением двух множеств А и В называется множество упорядоченных пар, в котором первый элемент каждой пары принадлежит А, а второй принадлежит В:

$$A \times B = \{ \langle a, b \rangle \mid a \in A \text{ и } b \in B \}$$

Пусть $A=\{1,3,7\}$, $B=\{a,b\}$, тогда

$$A \times B = \left\{ \langle 1, a \rangle, \langle 1, b \rangle, \langle 3, a \rangle, \langle 3, b \rangle, \langle 7, a \rangle, \langle 7, b \rangle \right\}$$

Декартовым квадратом множества А называется декартово произведение множества А на себя:

$$A^2 = A \times A = \{\langle a, b \rangle | a, b \in A \}$$

 $A^2=A imes A=\left\{\!\left\langle a,b\right\rangle\!\middle|a,b\!\in A\right\}$ Декартовым произведением множеств $A_1,A_2,...,A_n$ называется множество

$$A_1 \times A_2 \times ... \times A_n = \left\{ \!\! < a_1, a_2, ..., a_n >, ... \middle| a_i \in A_i, i = \overline{1,n} \right\}$$
 Степенью множества A называется его прямое произведение самого на себя:

$$A^{n} = A \times A \times ... \times A = \{ \langle a_{1}, a_{2}, ..., a_{n} \rangle | a_{i} \in A, i = \overline{1, n} \}$$

Раздел 2. Теория множеств и отношений.

Тема 2.1 Функции алгебры логики. Существенные и несущественные переменные. Элементарные булевы функции.

задано множество $E_2 = \{0,1\},$ обозначим $E_2^n = E_2 \times E_2 \times ... \times E_2$ — прямое произведение n сомножителей, $(x_1,...,x_n) \in E_2$, $|E_2|$ — мощность E_2 , $|E_2|$ = 2, тогда $|E_2|^n = 2^n$.

Функцией алгебры логики называется закон, осуществляющий отображение $f: E_2^n \to E_2$, причем отображение всюду определено и функционально. Функции алгебры логики называют также булевыми функциями или функциями алгебры двузначной

Функция $y = f(x_1,...,x_n)$ называется n-местной булевой функцией, если каждая переменная принимает только два значения 0 или 1 и функция принимает значения в этом же множе-

Булеву функцию можно задать таблицей истинности:

Таблица 2.1

x_I	x_2	 x_{n-1}	x_n	$f(x_1,\ldots,x_n)$
О	О	 0	0	f(0,,0)
O	0	 0	1	<i>f</i> (0,,1)
1	1	 1	1	f(1,,1)

Всюду в дальнейшем наборы значений переменных $x_1, ..., x_n$ булевой функции будем располагать в стандартном порядке, при котором набор $\alpha = \langle \alpha_1, ..., \alpha_n \rangle$ представляет собой двоичную запись числа в n разрядах своего номера (нумерация начинается с нуля)

Рассмотрим функции $f(x_1...x_n)$, где $(x_1...x_n) \in E_2^n$, тогда число наборов $(x_1...x_n)$,где функция $f(x_1...x_n)$ должна быть задана, равно $|E_2^n|=2^n$. Обозначим множество всех функций двузначной алгебры логики P_2 . Обозначим через $P_2(n)$ число функций, зависящих от n переменных. Очевидно, $P_2(n)=2^{2n}$.

Функция $f(x_1,...,x_{i-1},x_i,x_{i+1},...,x_n)$ существенно зависит от x_i , если существуют такие значения $\alpha_1,...,\alpha_{i-1},\alpha_{i+1},...,\alpha_n$ переменных $x_1,...,x_{i-1},x_{i+1},...,x_n$, что

 $f(\alpha_1, \ldots \alpha_{i-1}, 0, \alpha_{i+1} \ldots \alpha_n) \neq f(\alpha_1 \ldots \alpha_{i-1}, 1, \alpha_{i+1} \ldots \alpha_n).$

Тогда переменная x_i называется *существенной* переменной. В противном случае x_i называется *несущественной* или фиктивной переменной.

Элементарные булевы функции

Рассмотрим функции одной переменной. Они задаются следующим образом

Таблица 2.2

\boldsymbol{x}	$f_0(x)$	$f_1(x)$	$f_2(x)$	$f_3(x)$
O	0	0	1	1
1	0	1	0	1

Функции: $f_0(x) \equiv 0$ называется константой 0, $f_1(x) = x$ называется тождественной, $f_2(x) = \overline{X}$ называется «не x» и $f_3(x) \equiv 1$ называется константой 1.

Если стандартным расположением переменной x считать 0 в первой строке и 1 во второй, то функции f_0 , f_1 , f_2 , f_3 определяются однозначно наборами значений: f_0 =(0,0), f_1 =(0,1), f_2 =(1,0) и f_3 =(1,1). Наборы значений функций составляют множество $E_2 \times E_2$, поэтому количество функций одной переменной равно $|E_2 \times E_2|$ =4. Для удобства функции пронумерованы так, что двочиный код номера совпадает с набором значений функции.

Рассмотрим функции двух переменных $f(x_1,x_2)$. Функции двух переменных определены на множестве $E_2^2 = \{(0\ 0),(0\ 1),(1\ 0),(1\ 1)\}$, эти наборы переменных из E_2^2 можно тоже рассматривать как двоичные коды чисел 0,1,2,3, именно такой порядок расположения наборов (x_1,x_2) будем считать стандартным. Тогда функции $f(x_1,x_2)$ определяются однозначно наборами значений $(\beta_1,\beta_2,\beta_3,\beta_4)$, число таких функций равно $2^4 = 16$, занумеруем их числами от 0 до 15 (табл. 2.3 и табл. 2.4) так, чтобы двоичный код номера совпадал с набором значений функции.

Таблица 2.3

									_
$x_1 x_2$	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	
0 0	O	0	0	0	0	O	O	O	
0 1	O	0	O	O	1	1	1	1	
1 0	O	O	1	1	O	O	1	1	
1 1	O	1	O	1	O	1	O	1	

Таблица 2.4

$x_1 x_2$	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0 0	1	1	1	1	1	1	1	1
0.1	O	O	0	O	1	1	1	1
1 0	O	O	1	1	O	O	1	1
1 1	0	1	O	1	O	1	O	1

Тема 2.2 Свойства элементарных функций. Принципы двойственности.

Свойства элементарных функций

Рассмотрим некоторые основные свойства функций алгебры логики:

- 1. Идемпотентность & и \vee : x & x = x, $x \vee x = x$.
- 2. Коммутативность &,∨,⊕,|,~,↓.
- 3. Ассоциативность $\&, \lor, \oplus, \sim$, поэтому в формулах вида *хуг* можно не ставить никаких скобок.
- 4. Дистрибутивность:
 - а) & по отношению к \vee : x& $(y \vee z)$ = $xy \vee xz$,
 - б) \vee по отношению к &: $x \vee (y \& z) = (x \vee y) \& (x \vee z)$,
 - в) & по отношению к \oplus : $x(y\oplus z)=xy\oplus xz$.
- 5. Инволюция:

$$\overline{X} = X$$
.

6. Правило де Моргана:

$$\frac{\overline{X}}{X \vee y} = \overline{X} \otimes \overline{y} \text{ if } \overline{Xy} = \overline{X} \vee \overline{y}.$$

- 7. Законы действия с 0 и 1: $x \lor 0 = x$, $x \lor 1 = 1$, $x \lor X = 1$, x & 0 = 0x&1=x, x&X=0, $x\oplus1=X$, $x\oplus0=x$.
- 8. Самодистрибутивность импликации: $x \rightarrow (y \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow y)$ Равенство всех этих формул доказывается по определению т.е. по равенству функций, которые они реализуют.

Для примера проверим самодистрибутивность импликации: $x \rightarrow (y \rightarrow z) = (x \rightarrow y) \rightarrow (x \rightarrow z)$.

x	y	Z	$y \rightarrow z$	$x \rightarrow (y \rightarrow z)$	$x \rightarrow y$	$x \rightarrow z$	\rightarrow
0	O	O	1	1	1	1	1
O	O	1	1	1	1	1	1
O	1	O	O	1	1	1	1
O	1	1	1	1	1	1	1
1	O	O	1	1	O	O	1
1	O	1	1	1	O	1	1
1	1	O	O	0	1	O	0
1	1	1	1	1	1	1	1

Следствия из свойств элементарных функций:

1. Законы склеивания:

 $xy \lor x \ Y = x(y \lor Y) = x \bullet 1 = x$ (дистрибутивность & относительно \lor);

 $(x \lor y) \& (x \lor y) = x \lor y$, $y = x \lor 0 = x$ (дистрибутивность \lor относительно &).

2. Законы поглощения:

$$x \lor xy = x(1 \lor y) = x \bullet 1 = x; \quad x \& (x \lor y) = x \lor xy = x.$$

Свойства элементарных функций и теорема о замене подформул на эквивалентные позволяют упрощать формулы.

Пример. Упростим формулы:

1.
$$x_2x_3\lor x_1$$
 $x_2x_3 = x_3(x_2\lor x_1$ $x_2) = x_3((x_2\lor x_1)\&(x_2\lor x_2)) = (x_1\lor x_2)x_3$.

2.
$$x_1 \lor \overline{x_1} \ x_2 \lor \overline{x_2} \ \overline{x_2} \ x_3 \lor \overline{x_1} \ \overline{x_2} \ x_3 x_4 = x_1 \lor \overline{x_1} \ (x_2 \lor \overline{x_2} \ x_3 \lor \overline{x_2} \ \overline{x_3} \ x_4) =$$

$$= x_1 \vee \overline{x}_1(x_2 \vee x_3 \vee \overline{x}_2 \overline{x}_3 x_4) = (x_1 \vee \overline{x}_1)(x_1 \vee x_2 \vee x_3 \vee \overline{x}_2 \overline{x}_3 x_4) = x_1 \vee (x_2 \vee x_3) \vee (\overline{x}_2 \vee \overline{x}_3)(x_1 \vee x_2 \vee x_3 \vee (\overline{x}_2 \vee \overline{x}_3))(x_2 \vee x_3 \vee x_4) = x_1 \vee (x_2 \vee x_3 \vee x_4)$$

Принцип двойственности

Функция $f^*(x_1, ..., x_n)$ называется двойственной к функции $f(x_1, ..., x_n)$, если $f^*(x_1, ..., x_n) = f(X_1, ..., X_n)$.

Например, с помощью таблицы истинности покажем, ч константа 0 двойственна к 1:

x	f	f*
О	O	1
1	O	1

A функции f(x) = x и $g(x) = \overline{x}$ двойственны сами себе:

x	f	f*	g	g^*
O	O	O	1	1
1	1	1	O	0

так как $f^*(0) = f(1)$.

Если $f^*(x_1, ..., x_n) = f(x_1, ..., x_n)$, то $f(x_1, ..., x_n)$ называется *самодвойственной*.

Покажем, что $f(x_1,x_2,x_3)=x_1\oplus x_2\oplus x_3$ — самодвойственна:

x_1	x_2	x_3	f	f*
О	O	O	O	O
O	O	1	1	1
O	1	O	1	1
O	1	1	0	O
1	0	0	1	1
1	O	1	O	O
1	1	O	O	O
1	1	1	1	1

Если f^* — самодвойственна, то $f(\overline{x}_1, ..., \overline{x}_n) = f(x_1, ..., x_n)$, т.е. на противоположных наборах функция принимает противоположные значения.

Покажем, что функция $x_1 \lor x_2$ двойственна к $x_1 \& x_2$, функция $x_1 \lor x_2$ двойственна к функции $x_1 | x_2$.

x_1 x_2	$f=x_1\vee x_2$	f*	$g = x_1 x_2$	$g^*=x_1\downarrow x_2$
0 0	0	O	1	1
0 1	1	O	1	0
1 0	1	O	1	0
1 1	1	1	0	0

Теорема о двойственных функциях: Если f^* двойственна к f то f двойственна к f^* .

 $Tеорема - принцип двойственности: Пусть функция <math>h(x_1, ..., x_n)$ реализована формулой

 $h(x_1, ..., x_n) = =g(G_1, ..., G_m) = g(f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n)),$ где какие-то переменные могут быть фиктивными. Тогда

 $h^*(x_1, ..., x_n) = g^*(f_1^*(x_1, ..., x_n), ..., f_m^*(x_1, ..., x_n)),$ это означает, что если функция задана некоторой формулой, то чтобы получить двойственную функцию, надо в этой формуле все знаки функций заменить на двойственные, 0 на 1, 1 на 0.

Если функция $h(x_1, ..., x_n)$ реализуется формулой $N[f_1, ..., f_n]$, то формулу, полученную из N заменой f_i , входящих в нее, на f_i^* и реализующую функцию $h^*(x_1, ..., x_n)$, будем называть двойственной и обозначать $N^*(x_1, ..., x_n)$.

В качестве примера построим формулу, реализующую f^* , если $f = ((x \to y) \lor z)$ ($y \ \overline{z} \to (x \oplus yz)$). Покажем, что она эквивалентна формуле $N = z(x \oplus y)$.

Найдем $(x \oplus y)^*$ и $(x \rightarrow y)^*$.

x y	$x \oplus y$	(<i>x</i> ⊕ <i>y</i>)*	$x \rightarrow y$	$(x \rightarrow y)^*$
0 0	О	1	1	0
0 1	1	O	1	1
1 0	1	O	0	O
1 1	О	1	1	0

Тема 2.3 Разложение булевой функции по переменным. Совершенные дизъюктивная и конъюктивная нормальные формы.

Обозначим
$$x^{\sigma} = \begin{cases} \overline{X}, \sigma = 0, \\ x, \sigma = 1. \end{cases}$$

Тогда x^{σ} при разных значениях x и σ , будет равно

$x \mid \sigma$	0	1
0	1	0
1	O	1

Из таблицы следует: $x^{\sigma}=1$ тогда и только тогда, когда $x=\sigma$. *Теорема о разложении функции по переменным:* пусть $f(x_1, ..., x_n) \in P_2$. тогда для любого $m: 1 \le m \le n$ допустимо представление: $f(x_1, ..., x_m, x_{m+1}, ..., x_n) =$

$$= \bigvee_{(\sigma_1,...,\sigma_m)} X_1^{\sigma_1} \& X_2^{\sigma_2} \& ... \& X_m^{\sigma_m} \& f(\sigma_1,...,\sigma_m,X_{m+1},...,X_n)$$

где дизьюнкция берется по всем наборам из 0 и 1, которое называется разложеним функции f по переменным $x_1, ..., x_n$.

При m = 1, разложение по переменным x будет:

$$f(x_1, ..., x_n) = \bigvee_{\sigma_1} x_1^{\sigma_1} f(\sigma_1, x_2, ..., x_n) =$$

$$= \overline{X_1} f(0, x_2, ..., x_n) \lor x_1 f(1, x_2, ..., x_n).$$

При m=2, запишем разложение по переменным x и \overline{X} :

$$f(x_{1},x_{2},...x_{n}) = \bigvee_{\substack{(\sigma_{1},\sigma_{2})}} X_{1}^{\sigma_{1}} & X_{2}^{\sigma_{2}} & f(\sigma_{1},\sigma_{2},X_{3},...,X_{n}) = \\ \overline{x}_{1} \overline{x}_{2} f(0,0) \vee \overline{x}_{1} x_{2} f(0,1) \vee \overline{x}_{1} \overline{x}_{2} f(1,0) \vee x_{1} x_{2} f(1,1) = \\ = \bigvee_{\substack{(\sigma_{1},\sigma_{2}): f(\sigma_{1}\sigma_{2})=1}} X_{1}^{\sigma_{1}} X_{2}^{\sigma_{2}}.$$

Если $f(x_1, x_2) = x_1 \oplus x_2$, то последняя формула дает $x_1 \oplus x_2 = \overline{X_1} x_2 \lor x_1 \overline{X_2}$.

Любую функцию $f(x_1, ..., x_n)$ не равную тождественно нулю онжом представить

можно представить в виде:
$$f(X_1,...,X_n) = \bigvee_{(\sigma_1...\sigma_n): f(\sigma_1...\sigma_n)=1} X_1^{\sigma_1}...X_n^{\sigma_n}, \text{ причём единственным единственным различения общественным различения об$$

образом. Этот вид называется совершенной дизъюнктивной нормальной формой функции $f(x_1, ..., x_n)$ и записывается $C \square H \Phi$.

Если $X_1^{\sigma_1} ... X_n^{\sigma_n}$ – элементарная конъюнкция ранга n по числу входящих переменных, предполагается, что при $i \neq j$, $x_i \neq x_i$. СДНФ для $f(x_1, ..., x_n)$ –дизъюнкция элементарных конъюнкций ранга п. Если функция представлена в виде дизъюнкций элементарных коньюнкций, где ранг хотя бы одной элементарной конъюнкции меньше n, то такая форма называется ∂u ной нормальной формой (ДНФ).

Любая функция алгебры логики может быть представлена в виде формулы через отрицание, & и ∨.

- а) Если $f \equiv 0$, то $f(x_1, ..., x_n) = X_1 & X_1$.
- б) Если $f(x_1, ..., x_n) \neq 0$ тождественно, тогда ее можно представить в виде СДН Φ , где используются только связки , &, \vee . СДНФ дает алгоритм представления функции в виде формулы через &, ∨,

Например, пусть функция $f(x_1, x_2, x_3)$ задана таблицей исгинности. Запишем ее в виде СДНФ. Наборов, на которых функция равна 1, три: (0, 1, 0), (1, 0, 0) и (1, 1, 1), поэтому $f(\underline{x_1}, x_2, x_3) = x_1^0 \& x_2^1 \& x_3^0 \lor x_1^1 \& x_2^0 \& x_3^0 \lor x_1^1 \& x_2^1 \& x_3^1 =$ $= \overline{X_1} \& x_2 \& \overline{X_3} \lor x_1 \& \overline{X_2} \& \overline{X_3} \lor x_1 \& x_2 \& x_3.$

x_1	x_2	x_3	f
0	x_2	0	0
0	1	1	0
0	1	O	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Пусть функция $f(x_1, ..., x_n) \neq 1$ тождественно. Тогда функция $f^* \neq 0$ тождественно, и ее можно представить в виде СДНФ:

$$f(X_{1},...,X_{n}) = (f^{*}(X_{1},...,X_{n}))^{*} = (\bigvee_{(\sigma_{1}...\sigma_{n}): f^{*}(\sigma_{1}...\sigma_{n})=1} X_{1}^{\sigma_{1}}...X_{n}^{\sigma_{n}})^{*}.$$

По принципу двойственности заменим & на \vee и наоборот, получим

$$f(x_1,...,x_n) = \underbrace{\&}_{(\sigma_1\dots\sigma_n):\bar{f}(\overline{\sigma}_1\dots\overline{\sigma}_n)=1} (x_1^{\sigma_1}\vee\ldots\vee x_n^{\sigma_n}) =$$

$$= \underbrace{\&}_{(\sigma_1\dots\sigma_n):f(\overline{\sigma}_1\dots\overline{\sigma}_n)=0} (x_1^{\sigma_1}\vee\ldots\vee x_n^{\sigma_n}) = \underbrace{\&}_{(\sigma_1\dots\sigma_n):f(\sigma_1\dots\sigma_n)=0} (x_1^{\overline{\sigma}_1}\vee\ldots\vee x_n^{\overline{\sigma}_n}).$$

$$(x_1^{\sigma_1}\vee\ldots\vee x_n^{\sigma_n}) \text{ называется элементарной дизьюнкцией ранга } n.$$

 $(x_1^{\sigma_1} \lor ... \lor x_n^{\sigma_n})$ называется элементарной дизьюнкцией ранга n. Такое представление функции называется совершенной коньюнктивной нормальной формой или в краткой записи — $CKH\Phi$. СКН Φ для $f(x_1, ..., x_n)$ — коньюнкция элементарных дизьюнкций ранга n. КН Φ для $f(x_1, ..., x_n)$ — коньюнкция элементарных дизьюнкций, где ранг хотя бы одной элементарной дизьюнкции меньше n.

Пример. Пусть $f(x_1, x_2, x_3) = x_1 \rightarrow (x_2 \rightarrow (x_3 \sim x_1))$. Представим в иде

x_1	x_2	x_3	$x_3 \sim x_1$	$x_2 \rightarrow (x_3 \sim x_1)$	f
0	0	0	1	1	1
0	O	1	О	1	1
0	1	O	1	1	1
0	1	1	О	О	1
1	O	O	О	1	1
1	O	1	1	1	1
1	1	O	О	О	O
1	1	1	1	1	1

СКНФ, для этого получим таблицу истинности

ee

Функция равна нулю только на наборе (1, 1, 0), поэтому $f(x_1 x_2 x_3) = x_1^{\frac{1}{1}} \lor x_2^{\frac{1}{1}} \lor x_3^{\frac{1}{0}} = x_1^0 \lor x_2^0 \lor x_3^1 = \overline{x_1} \lor \overline{x_2} \lor x_3.$

Раздел 3. Комбинаторика.

Тема 3.1 Элементы и основные правила комбинаторики.

Пусть есть некоторое конечное множество элементов $U=\{a_1,\ a_2,\ ...,\ a_n\}.$ Рассмотрим набор элементов $a_{i_1},\ a_{i_2},\ ...,a_{j_j}$, где $a_{j_i}\in U,\ j=1,\ 2,\ ...,\ r.$

Этот набор называется выборкой объема r из n элементов. Любое подмножество U является выборкой, но не всякая выборка является подмножеством U, так как в выборку один и тот же элемент может входить несколько раз (в отличие от подмножества).

Комбинаторные задачи связаны с подсчетом числа выборок объема r из n элементов, где выборки подчиняются определенным условиям, т.е. выбор производится по какому-нибудь принципу. Подсчет числа выборок основывается на двух правилах теории множеств.

Правило суммы: если |A|=m, |B|=n и $A \cap B=\emptyset$, то $|A \cup B|=m+n$. На комбинаторном языке это означает: если объект A можно выбрать m способами, объект B другими n способами и их одновременный выбор невозможен, то выбор "A или B" может быть осуществлен m+n способами.

Правило произведения: если |A| = m, |B| = n, то $|(A \times B)| = m \cdot n$. На комбинаторном языке это означает: если объект A может быть выбран m способами, при любом выборе A объект B может быть выбран n способами, то выбор "A и B" может быть осуществлен $m \cdot n$ способами.

Пример 1. Пусть имеется A=10 {различных шоколадок}, B=5 {различных пачек печенья}, то выбор "A или B" означает, что выбирается что-то одно и способов выбора в этом случае будет 15. Выбор "A и B" означает, что выбирается 1 шоколадка и 1 пачка печенья и различных вариантов для такого выбора будет 50.

Пример 2. Бросают 2 игральные кости. Сколькими способами они могут выпасть так, что на каждой кости выпадет четное число очков либо на каждой кости выпадет нечетное число очков?

Решение: Пусть m — число возможностей для выпадения четного числа на одной кости, n — число возможностей для выпадения нечетного числа. Здесь m = n = 3. По правилу произведения количество выпадения четных чисел, как и нечетных, равно 9. По правилу суммы количество возможностей для выпадения двух четных и двух нечетных чисел будет 18.

Рассмотрим основные способы формирования выборок.

Выборка называется упорядоченной, если в ней задан порядок следования элементов. Если порядок следования элементов несущественен, то выборка называется неупорядоченной.

Из определения следует, что две упорядоченные выборки, состоящие из одних и тех же элементов, но расположенных в разном порядке, являются различными.

Тема 3.2 Перестановки без повторений и с повторениями.

Перестановки без повторений

Упорядоченные выборки, объемом n из n элементов, где все элементы различны, называются перестановками из n элементов. Число перестановок из n элементов обозначается P_n .

 $Teopema: P_n = n!$

Доказательство проводится по индукции. Очевидно, если n=1, то перестановка только одна и $P_1=1!$. Пусть для n=k теорема верна и $P_k=k!$, покажем, что она тогда верна и для n=k+1. Рассмотрим (k+1)- й элемент, будем считать его объектом A, который можно выбрать k+1 способами. Тогда объект B — упорядоченная выборка из оставшихся k элементов по k. В соответствии с индуктивным предположением объект B можно выбрать k! способами. По правилу произведения выбор A и B можно осуществить k!(k+1)=(k+1)! способами. Совместный выбор A и B есть упорядоченная выборка из k+1 элементов по k+1.

Пример 3. Сколько существует способов, чтобы расположить на полке 10 различных книг?

Решение: 10!

Можно рассуждать иначе. Выбираем первый элемент, это можно сделать n способами. Затем выбираем второй элемент, это можно сделать (n-1) способами. По правилу произведения упорядоченный выбор двух элементов можно осуществить $n \times (n-1)$ способами. Затем выбираем третий элемент, для его выбора останется n-2 возможности, последний элемент можно выбрать единственным способом. Мы вновь приходим к формуле: $n(n-1)(n-2) \dots 1$.

Перестановки с повторениями

Пусть имеется n элементов, среди которых k_1 элементов первого типа, k_2 элементов второго типа и т.д., k_s элементов s-го типа, причем $k_1 + k_2 + ... + k_s = n$. Упорядоченные выборки из таких n элементов по n называются перестановками с повторениями, их число обозначается $C_n(k_1, k_2, ..., k_s)$. Числа $C_n(k_1, k_2, ..., k_s)$ называются полиномиальными коэффициентами.

Теорема:
$$C_n(k_1, ..., k_s) = \frac{n!}{k_1! k_2! ... k_s!}$$

Доказательство проведем по индукции по s, т. е. по числу типов элементов. При s=1 утверждение становится тривиальным: $k_1=n$, все элементы одного типа и $C_n(n)=1$. В качестве базы индукции возьмем s=2, $n=k_1+k_2$. В этом случаем перестановки с повторениями превращаются в сочетания из n элементов по k_1 (или k_2): выбираем k_1 место, куда помещаем элементы первого типа.

$$C_n(k_1,k_2) = C_n^{k_1} = \frac{n!}{k_1!(n-k_1)!} = \frac{n!}{k_1!k_2!}.$$
 Пусть формула верна для $s=m$, т.е. $n=k_1+\ldots+k_m$ и $C_n(k_1,\ldots,k_m) = \frac{n!}{k_1!k_2!\ldots k_m!}.$

Докажем, что она верна для s=m+1 ($n=k_1+...+k_m+k_{m+1}$). В этом случае перестановку с повторениями можно рассматривать как совместный выбор двух объектов: объект A — выбор k_{m+1} места для элементов (m+1)-го типа; объект B — перестановка с повторениями из ($n-k_{m+1}$) элементов. Объект A можно выбрать $C_n^{k_{m+1}}$ способом, $B-C_{n-k_{m+1}}$ ($k_1, ..., k_m$) способами. По правилу произведения

$$C_n(k_1,...,k_m,k_{m+1}) = C_n^{k_{m+1}} \times C_{n-k_{m+1}}(k_1,...,k_m) =$$

$$= \frac{n!}{(k_{m+1})!(n-k_{m+1})!} \times \frac{(n-k_{m+1})!}{k_1!k_2!...k_m!} = \frac{n!}{k_1!k_2!...k_m!k_{m+1}!}$$
и мы получили требуемую формулу.

Числа $C_n^m = \frac{n!}{m!(n-m)!}$ также называются биноминальными

коэффициентами. Из этой формулы следует, что $C_n^m = C_n^{n-m}$.

Пример 8. Сколько различных слов можно получить, переставляя буквы в слове "математика"?

Решение: Буква "а" входит 3 раза $(k_1=3)$, буква "м" – 2 раза $(k_2=2)$, "т" – 2 раза $(k_3=2)$, буквы "е", "к", "и" входят по одному разу, отсюда $k_3=k_4=k_5=1$.

$$C_{10}(3, 2, 2, 1, 1, 1) = \frac{10!}{3!2!2!} = 151200.$$

Тема 3.3 Размещения без повторений и с повторениями.

Размещения без повторений

Размешения

Упорядоченные выборки объемом m из n элементов (m < n), где все элементы различны, называются размещениями. Число размещений из n элементов по m обозначается A_n^m .

$$Teopema: A_n^m = \frac{n!}{(n-m)!}.$$

Обозначим $x = A_n^m$. Тогда оставшиеся (n - m) элементов можно упорядочить (n - m)! способами. По правилу произведения, если объект A можно выбрать x способами, а объект B можно выбрать (n - m)! способами, то совместный выбор "A и B" можно осуществить $x \cdot (n - m)!$ способами, а выбор "A и B" есть перестановки и $P_n = n!$ Отсюда $x = A_n^m = \frac{n!}{(n - m)!}$.

Рассуждая иначе: первый элемент выбираем n способами, второй -(n-1) способами и т.д. , m—й элемент выбираем (n-m+1) способом. По правилу произведения вновь имеем: n(n-1)...(n-m+1), что совпадает с \mathcal{A}_n^m .

Пример 4. Группа из 15 человек выиграла 3 различных книги. Сколькими способами можно распределить эти книги среди группы?

Решение: Имеем
$$A_{15}^3 = \frac{15!}{12!} = 15 \cdot 14 \cdot 13 = 2730.$$

Размещения с повторениями

Упорядоченные выборки объемом m из n элементов, где элементы могут повторяться, называются размещениями с повторениями. Их число обозначается $A_n^m(n)$.

$$Teopema: A_n^m(n) = n^m.$$

Доказательство. Первый элемент может быть выбран n способами, второй элемент также может быть выбран n способами и так далее, m -й элемент также может быть выбран n способами. По правилу произведения получаем n^m .

Пример 6. Кодовый замок состоит из четырех разрядов, в каждом разряде независимо от других могут быть выбраны цифры от 0 до 9. Сколько возможных комбинаций?

Решение: Здесь n = 10, m = 4 и ответом будет 10^4 .

Тема 3.4 Сочетания без повторений и с повторениями.

Сочетания без повторений

Неупорядоченные выборки объемом m из n элементов (m < n) называются сочетаниями. Их число обозначается C_n^m .

$$Teopema: C_n^m = \frac{m!}{m!(n-m)!}.$$

Доказательство. Очевидно, $A_n^m = C_n^m m!$. Действительно, объект A — неупорядоченная выборка из n элементов по m, их число C_n^m . После того, как эти m элементов отобраны, их можно упорядочить m! способами (в роли объекта В выступает "порядок" в выборке). Совместный выбор "A и B" — упорядоченная выборка.

Пример 5. Группа из 15 человек выиграла 3 одинаковых книги. Сколькими способами можно распределить эти книги?

Решение:
$$C_{15}^3 = \frac{15!}{3!12!} = \frac{15 \times 14 \times 13}{1 \times 2 \times 3} = 455.$$

Сочетания с повторениями

Пусть имеется n типов элементов, каждый тип содержит не менее m одинаковых элементов. Неупорядоченная выборка объемом m из имеющихся элементов (их число $\geq m \times n$) называется сочетанием с повторением. Число сочетаний с повторениями обозначается $C_n^m(n)$.

$$Teopema: C_n^m(n) = C_{n+m-1}^m.$$

Доказательство. Пусть в выборку вошло m_1 элементов первого типа, m_2 элементов второго типа, ... $m_n - n$ -го типа. Причем каждое $0 \le m$ $_i \le m$ и $m_1 + m_2 + \ldots + m_n = -m$. Сопоставим этой выборке вектор следующего вида: $b_n = (\underbrace{11\ldots 1011\ldots 10\ldots 011\ldots 1}_{m_1})$.

Очевидно, между множеством неупорядоченных выборок с повторениями и множеством векторов $\{b_n\}$ существует биекция (докажите это!). Следовательно, $C_n^m(n)$ равно числу векторов b_n . "Длина вектора" b_n равна числу 0 и 1, или m++n-1. Число векторов равно числу способов, которыми m единиц можно поставить на m+n-1 мест, а это будет C_{n+m-1}^m .

Пример 9. В кондитерской имеется 7 видов пирожных. Покупатель берет 4 пирожных. Сколькими способами он может это сделать ? (Предполагается, что пирожных каждого вида ≥ 4).

Решение: Число способов будет
$$C_{7+4-1}^4 = C_{10}^4 = \frac{10!}{4!6!} = \frac{7 \times 8 \times 9 \times 10}{1 \times 2 \times 3 \times 4} = 210.$$

Раздел 4. Основы теории кодирования.

Кодирование позволяет изучение одних объектов сводить к изучению других. В связи с изучением управляющих систем появилась необходимость систематических исследований в области теории кодирования. Основной круг задач этой теории может быть прослежен на примере из области связи (рис.5.1).

Рис. 5.1. Базовые элементы передачи данных в области связи

Выбор кодов связан с различными обстоятельствами:

- с удобством передачи кодов (например, двоичный код технически легче использовать);
- с обеспечением удобства восприятия (например, машинные коды удобны для работы процессора);
- с обеспечением максимальной пропускной способности канала;
 - с обеспечением помехоустойчивости;
- с простотой кодирования, возможностью обнаружения ошибки, исправления ошибки и т.п.

Тема 4.1 Код Хэмминга.

Код Хэмминга исправляет одну ошибку, т.е. относится к классу самокорректирующихся кодов. В алфавите $\{0;1\}$ записываются все сообщения в виде слов длины m. Эти сообщения кодируются двоичными наборами $\beta_1...\beta_\ell$, где ℓ – длина кода, $\ell > m$. Пусть $\ell = m + k$. Предположим, что при прохождении кодового слова через канал связи произошла одна ошибка, в таком случае код сообщения на выходе может иметь вид:

$$\begin{array}{c} \beta_1\beta_2\beta_3\ldots\beta_\ell \\ \overline{\beta}_1\beta_2\beta_3\ldots\beta_\ell \\ \beta_1\overline{\beta}_2\beta_3\ldots\beta_\ell \\ \ldots\ldots\ldots\ldots\\ \beta_1\beta_2\beta_3\ldots\overline{\beta}_\ell \end{array} \right\} \quad \ell+1\,\mathrm{вариант}.$$

Для того, чтобы дополнительных разрядов в коде $\beta_1...\beta_\ell$, хватало для кодировки $\ell+1$ варианта, необходимо $2^k \ge \ell+1$, т.е. $2^m \le \frac{2^\ell}{\ell+1}$. Из этих соображений выберём ℓ как наименьшее це-

лое число, удовлетворяющее неравенству $2^m \le \frac{2^\ell}{\ell+1}$.

Алгоритм кодирования: Пусть V- натуральное число $(1 \le V \le \ell)$, $V_k \dots V_1-$ его двоичная запись. Построим последовательности:

$$\begin{array}{lll} \Pi_1 = & \{1,3,5,7,9,11,13,15,\dots\} & \text{ все числа c } V_1 = 1; \\ \Pi_2 = & \{2,3,6,7,10,11,14,15,\dots\} & \text{ все числа c } V_2 = 1; \\ \Pi_3 = & \{4,5,6,7,12,13,14,15,\dots\} & \text{ все числа c } V_3 = 1; \\ \Pi_4 = & \{8,9,10,11,12,13,14,15,\dots\} & \text{ все числа c } V_4 = 1; \\ \dots & \dots & \dots & \dots & \dots \\ \Pi_k = & \{2^{k-1},2^{k-1}+1,\dots & \dots\} & \text{ все числа c } V_k = 1. \end{array}$$

Члены β_i набора $\beta_1...\beta_\ell$, у которых называют контрольными, а остальные — информационными. Слово $\alpha_1...\alpha_m$ кодируется словом $\beta_1...\beta_\ell$, так:

$$\beta_1 = \alpha_1, \beta_5 = \alpha_2, \beta_6 = \alpha_3, \beta_7 = \alpha_4, \beta_9 = \alpha_5, \beta_{10} = \alpha_6, \beta_{11} = \alpha_7, \dots$$

Затем определяются контрольные члены:

$$\beta_{1} = \beta_{3} + \beta_{5} + \beta_{7} + \beta_{9} + \beta_{11} + \beta_{13} + \beta_{15} + \beta_{17} + \dots \pmod{2},$$

$$\beta_{2} = \beta_{3} + \beta_{6} + \beta_{7} + \beta_{10} + \beta_{11} + \beta_{14} + \beta_{15} + \beta_{18} + \dots \pmod{2},$$

$$\beta_{4} = \beta_{5} + \beta_{6} + \beta_{7} + \beta_{12} + \beta_{13} + \beta_{14} + \beta_{15} + \beta_{20} + \dots \pmod{2},$$

$$\beta_{8} = \beta_{9} + \beta_{10} + \beta_{11} + \beta_{12} + \beta_{13} + \beta_{14} + \beta_{15} + \beta_{24} + \dots \pmod{2},$$

$$\beta_{8} = \beta_{9} + \beta_{10} + \beta_{11} + \beta_{12} + \beta_{13} + \beta_{14} + \beta_{15} + \beta_{24} + \dots \pmod{2},$$

$$\beta_{8} = \beta_{9} + \beta_{10} + \beta_{11} + \beta_{12} + \beta_{13} + \beta_{14} + \beta_{15} + \beta_{24} + \dots \pmod{2},$$

Обнаружение ошибки в кодах Хэмминга: Пусть при передаче кода $\beta_1...\beta_\ell$ произошла ошибка в S-м члене, т.е. на выходе принято слово $\beta_1...\overline{\beta}_3...\beta_\ell = \beta_1'...\beta_\ell'$, и пусть $S = S_k...S_1$ – запись S в двоичном исчислении. Рассмотрим число $S' = S_k'...S_1'$, где

$$S'_{1} = \beta'_{1} + \beta'_{3} + \beta''_{5} + \beta'_{7} + \beta'_{9} + \beta'_{11} + \beta'_{13} + \beta'_{15} + \dots \pmod{2},$$

$$S'_{2} = \beta'_{2} + \beta'_{3} + \beta'_{6} + \beta'_{7} + \beta'_{10} + \beta'_{11} + \beta'_{14} + \beta'_{15} + \dots \pmod{2},$$

$$S'_{3} = \beta'_{4} + \beta'_{5} + \beta'_{6} + \beta'_{7} + \beta'_{12} + \beta'_{13} + \beta'_{14} + \beta'_{15} + \dots \pmod{2},$$

$$S'_{4} = \beta'_{8} + \beta'_{9} + \beta'_{10} + \beta'_{11} + \beta'_{12} + \beta'_{13} + \beta'_{14} + \beta'_{15} + \dots \pmod{2}$$

$$\Rightarrow S_1' = 1 + \beta + \beta_3 + \beta_5 + \beta_7 + \beta_9 + \dots = 1 + 0 = 1 \pmod{2} \Rightarrow S_1' = 1.$$

Следовательно, для обнаружения и исправления ошибки достаточно построить S' .

Декодирование: Требуется по коду $\beta_1...\beta_\ell$ построить слово $\alpha_1...\alpha_m$. Для этого достаточно взять информационные члены в $\beta_1...\beta_\ell$.

Тема 4.2 Самокорректирующиеся коды.

Пусть В = {0; 1}. Рассматриваем единичный n-мерный куб B^n как метрическое пространство, в котором для точек $\beta' = (\beta_1'...\beta_\ell')$ и $\beta'' = (\beta_1''...\beta_\ell'')$ расстояние $\rho(\beta',\beta'')$ определено по формуле $\rho(\beta',\beta'') = \sum_{i=1}^{\ell} (\beta_i' - \beta_i'') = \sum_{i=1}^{\ell} (\beta' + \beta'') \pmod{2}$ (расстояние Хэмминга), т.е. это число координат, в которых различаются наборы β' и β'' . Обозначим через $U_\ell^p(c) = \left\{x \in B^\ell \mid \rho(x,c) \le p\right\}$ шар радиуса p с центром p0. Множество p1 кодовых слов будем коротко называть кодом p2. Код p3 обнаруживает p4 ошибок, если ни одно кодовое слово не принадлежит шару радиуса p6 с центром в другом кодовом слове. Код исправляет p9 ошибок, если любые

Теорема: Код $H \le B^{\ell}$ исправляет p ошибок, ⇔ расстояние между двумя любыми кодовыми словами $\ge 2P+1$.

два шара радиуса р с центром в кодовых словах не пересекают-

4.3. Лабораторные работы

Учебным планом не предусмотрено.

4.4. Практические занятия

N <u>o</u> n/n	Номер раздела дисциплины	Наименование тем практических занятий	Объем (час.)	Вид занятия в интерактивной, активной, инновационной формах, (час.)
1	1.	Операции над множествами.	5	-
2	1.	Определение булеана множества. Определение прямого декартового произведения множеств.	6	-
3	2.	Построение таблицы истинности булевой функции. Для заданной функции выяснить, какие ее переменные являются существенными, а какие – фиктивными.	8	разбор конкретных ситуаций (2 часа)
4	2.	Преобразование функции, с помощью формулы дизъюнктивного расположения по совокупности переменных.	3	-
5	3.	Решение задач комбинаторики с помощью перестановки без повторений и с повторениями.	4	разбор конкретных ситуаций (2 часа)
6	3.	Решение задач комбинаторики с помощью размещения без повторений и с повторениями.	4	разбор конкретных ситуаций (2 часа)
7	3.	Решение задач комбинаторики с помощью сочетания без повторений и с повторениями.	4	разбор конкретных ситуаций (2 часа)
		ОТОТИ	34	8

4.5. Контрольные мероприятия: контрольная работа

(2015-2017 год набора)

Цель: Приобрести навыки кодирования кодом Хэмминга различных сообщений.

Структура: Каждое индивидуальное задание предполагает выполнение студентом следующих разделов:

- Закодировать заданное сообщение кодом Хэмминга.
- Пользуясь кодом Хэмминга найти ошибку в сообщении.

Основная тематика: Кодирование сообщений, используя код Хэмминга.

Рекомендуемый объем: Пояснительная записка объемом 5 - 10 страниц должна содержать титульный лист, задание, описание выполняемых действий по каждому разделу и полученные результаты.

Выдача задания и прием кр проводится в соответствии с календарным учебным графиком

Оценка	Критерии оценки контрольной работы					
отлично	Во время защиты контрольной работы студент демонстрирует знание всех основных определений, показывает уверенное умение кодирования сообщений кодом Хэмминга, владение достаточным уровнем понимания материала, и способностью самостоятельно высказать мысль на научно-техническом языке.					
хорошо	Во время защиты контрольной работы студент показал не полное понимание материала и навыков владения практическими приемами.					
удовлетворительно	Во время защиты контрольной работы студент показал слабое понимание материала и навыков владения практическими приемами.					
неудовлетворительно	Во время защиты контрольной работы студент не продемонстрировал теоретических знаний по теме работы, либо не показал ни каких практических навыков.					

2018 год набора: Учебным планом не предусмотренно

5. МАТРИЦА СООТНЕСЕНИЯ РАЗДЕЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ К ФОРМИРУЕМЫМ В НИХ КОМПЕТЕНЦИЯМ И ОЦЕНКЕ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Компетенции №, наименование разделов дисциплины	Кол-во часов	Компетенции ОПК 3	Σ κοм п.	t_{cp} , час	Вид учебных занятий	Оценка результатов
1	2	3	4	5	6	7
1. Теория множеств и отношений.	29	+	1	29	Лк, ПЗ, СРС	зачет
2. Булева алгебра и элементы математической логики.	31	+	1	31	Лк, ПЗ, СРС	зачет
3. Комбинаторика.	30	+	1	30	Лк, ПЗ, СРС	зачет
4. Основы теории кодирования.	18	+	1	18	Лк, кр, СРС	зачет
всего часов	108	108	1	108		

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

1 Новиков, Ф. А. Дискретная математика: учебник для бакалавров и магистров / Ф. А. Новиков. - 2-е изд. - Санкт-Петербург: Питер, 2014. - 432 с.

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Nº	Наименование издания	Вид заня- тия	Количество экземпляров в библиотеке, ит.	Обеспечен- ность, (экз./ чел.)
1	2	3	4	5
	Основная литература			
1.	Шевелев, Ю. П. Дискретная математика: учебное пособие для вузов / Ю. П. Шевелев Санкт-Петербург: Лань, 2008 592 с.	Лк, ПЗ	6	0,5
2.	Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин 2-е изд., испр. и доп Санкт-Петербург: Лань, 2010 368 с.	Лк, ПЗ	21	1
	Дополнительная литература			
3.	Основы дискретной математики: практикум / С. А. Дьяконица Братск: БрГУ, 2015 97 с.	Лк, ПЗ	24	1
4.	Микони, С. В. Дискретная математика для бакалавра: множества, отношения, функции, графы: учебное пособие / С. В. Микони Санкт-Петербург: Лань, 2012 192 с.	Лк, ПЗ	5	0,5

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ» НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1.Электронный каталог библиотеки БрГУ http://irbis.brstu.ru/CGI/irbis64r_15/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=BOOK&P21 DBN=BOOK&S21CNR=&Z21ID=.
 - 2. Электронная библиотека БрГУ

http://ecat.brstu.ru/catalog.

- 3. Электронно-библиотечная система «Университетская библиотека online» http://biblioclub.ru .
 - 4. Электронно-библиотечная система «Издательство «Лань» http://e.lanbook.com .
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru .
 - 6. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru .
- 7. Университетская информационная система РОССИЯ (УИС РОССИЯ) https://uisrussia.msu.ru/ .
 - 8. Национальная электронная библиотека НЭБ http://xn--90ax2c.xn--p1ai/how-to-search /.

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

9.1. Методические указания для обучающихся по выполнению практических работ

Практическое занятие №1

Операции над множествами.

Цель занятия:

приобрести навыки расчёта основных операций над множествами.

Задание:

- 1. изучить теоретические основы;
- 2. задать два множества А и В;
- 3. найти их объединение;
- 4. найти их пересечение;
- 5. найти разность А и В;
- 6. найти разность В и А;
- 7. найти дополнение множества А и В.

Порядок выполнения:

соответствует пунктам 1-7 задания.

Форма отчетности:

отчёт сдаётся в печатном виде. В отчёте должны присутствовать:

- 1. Номер варианта индивидуального задания;
- 2. Цель работы:
- 3. Задание:
- 4. Поэтапное выполнения всех заданий варианта индивидуального задания;
- 5. Заключение.

Задания для самостоятельной работы:

Предусмотрены индивидуальным заданием обучающегося.

Рекомендации по выполнению заданий и подготовке к практическому занятию

Ознакомиться с теоретическим материалом, представленным в первом разделе данной дисциплины.

Основная литература

- 1. Шевелев, Ю. П. Дискретная математика : учебное пособие для вузов / Ю. П. Шевелев. Санкт-Петербург : Лань, 2008. 592 с.
- 2. Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы: учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. 2-е изд., испр. и доп. Санкт-Петербург: Лань, 2010. 368 с.

Дополнительная литература

- 1. Основы дискретной математики : практикум / С. А. Дьяконица. Братск : БрГУ, 2015. 97 с.
- 2. Микони, С. В. Дискретная математика для бакалавра: множества, отношения, функции, графы: учебное пособие / С. В. Микони. Санкт-Петербург: Лань, 2012. 192 с.

Контрольные вопросы для самопроверки

1. Перечислите основные операции над множествами.

Практическое занятие №2

Определение булеана множества. Определение прямого декартового произведения множеств.

Цель занятия:

определить булеан заданного множества А; определить прямое декартовое произведение заданных множеств А и В.

Задание:

- 1. изучить теоретические основы;
- 2. определить булеан заданного множества А;
- 3. определить прямое декартовое произведение заданных множеств А и В.

Порядок выполнения:

Соответствует пунктам 1 – 3 задания.

Форма отчетности:

Отчёт сдаётся в печатном виде. В отчёте должны присутствовать:

- 1. Номер варианта индивидуального задания;
- 2. Цель работы:
- 3. Задание;
- 4. Поэтапное выполнения всех заданий варианта индивидуального задания;
- 5. Заключение.

Задания для самостоятельной работы:

Предусмотрены индивидуальным заданием обучающегося.

Рекомендации по выполнению заданий и подготовке к практическому занятию

Ознакомиться с теоретическим материалом, представленным в первом разделе данной лиспиплины.

Основная литература

- 1. Шевелев, Ю. П. Дискретная математика : учебное пособие для вузов / Ю. П. Шевелев. Санкт-Петербург : Лань, 2008. 592 с.
- 2. Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы : учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2010. 368 с.

Дополнительная литература

- 1. Основы дискретной математики : практикум / С. А. Дьяконица. Братск : БрГУ, 2015. 97 с.
- 2. Микони, С. В. Дискретная математика для бакалавра: множества, отношения, функции, графы: учебное пособие / С. В. Микони. Санкт-Петербург: Лань, 2012. 192 с.

Контрольные вопросы для самопроверки

- 1. Дайте определение булеана.
- 2. Дайте определение прямого декартового произведения множеств.

Практическое занятие №3

Построение таблицы истинности булевой функции. Для заданной функции выяснить, какие ее переменные являются существенными, а какие – фиктивными.

Занятие проводится в интерактивной форме с разбором конкретных ситуаций.

Цель занятия:

построить таблицу истинности булевой функции, заданной формулой f, для заданной функции выяснить, какие ее переменные являются существенными, а какие — фиктивными. Задание:

- 1. изучить теоретические основы;
- 2. выписать в таблицу под символами переменных все наборы значений, которые эти переменные принимают;
- 3. под символами булевых операций выписать значения функций, соответствующие этим наборам;
- 4. для наглядности сверху поставить числа, указывающие порядок выполнения действий, а снизу с помощью стрелок показать, над какими столбцами производятся действия и куда записывается результат выполнения этих действий;
- 5. самой булевой функцией f будет соответствовать столбец, обведенный двойной рамкой.
- 6. выбрать существенные и фиктивные переменные.

Порядок выполнения:

Соответствует пунктам 1 – 6 задания.

Форма отчетности:

Отчёт сдаётся в печатном виде. В отчёте должны присутствовать:

- 1. Номер варианта индивидуального задания;
- 2. Цель работы:
- 3. Задание;
- 4. Поэтапное выполнения всех заданий варианта индивидуального задания;
- 5. Заключение.

Задания для самостоятельной работы:

Предусмотрены индивидуальным заданием обучающегося.

Рекомендации по выполнению заданий и подготовке к практическому занятию

Ознакомиться с теоретическим материалом, представленным во втором разделе данной лисциплины.

Основная литература

- 1. Шевелев, Ю. П. Дискретная математика : учебное пособие для вузов / Ю. П. Шевелев. Санкт-Петербург : Лань, 2008. 592 с.
- 2. Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы : учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2010. 368 с.

Дополнительная литература

- 1. Основы дискретной математики : практикум / С. А. Дьяконица. Братск : БрГУ, 2015. 97 с.
- 2. Микони, С. В. Дискретная математика для бакалавра: множества, отношения, функции, графы : учебное пособие / С. В. Микони. Санкт-Петербург : Лань, 2012. 192 с.

Контрольные вопросы для самопроверки

- 1. дайте краткое описание построения таблицы истинности булевой функции.
- 2. объясните, как выбрать существенные и фиктивные переменные.

Практическое занятие №4

Преобразование функции, с помощью формулы дизъюнктивного расположения по совокупности переменных.

Цель занятия:

преобразовать функцию, с помощью формулы дизьюнктивного расположения.

Задание:

- 1. изучить теоретические основы;
- 2. найти единичные наборы для каждого из выражений, тогда объединение множеств единичных наборов и даст множество единичных наборов исходной функции.

Порядок выполнения:

Соответствует этапам 1 – 2 задания.

Форма отчетности:

Отчёт сдаётся в печатном виде. В отчёте должны присутствовать:

- 1. Номер варианта индивидуального задания;
- 2. Цель работы:
- 3. Задание;
- 4. Поэтапное выполнения всех заданий ВИЗ;
- 5. Заключение.

Задания для самостоятельной работы:

Предусмотрены индивидуальным заданием обучающегося.

Рекомендации по выполнению заданий и подготовке к практическому занятию

Ознакомиться с теоретическим материалом, представленным во втором разделе данной дисциплины.

Основная литература

- 1. Шевелев, Ю. П. Дискретная математика : учебное пособие для вузов / Ю. П. Шевелев. Санкт-Петербург : Лань, 2008. 592 с.
- 2. Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы : учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2010. 368 с.

Дополнительная литература

- 1. Основы дискретной математики : практикум / С. А. Дьяконица. Братск : БрГУ, 2015. 97 с.
- 2. Микони, С. В. Дискретная математика для бакалавра: множества, отношения, функции, графы : учебное пособие / С. В. Микони. Санкт-Петербург : Лань, 2012. 192 с.

Контрольные вопросы для самопроверки

1. дайте краткое описание преобразования функции, с помощью формулы дизъюнктивного расположения по совокупности переменных.

Практическое занятие №5

Решение задач комбинаторики с помощью перестановки без повторений и с повторениями.

Занятие проводится в интерактивной форме с разбором конкретных ситуаций.

Цель занятия:

Научится решать задачи комбинаторики с помощью перестановки без повторений и с повторениями.

Задание:

- 1. изучить теоретические основы возок;
- 2. решить задачи комбинаторики с помощью перестановки без повторений;
- 3. решить задачи комбинаторики с помощью перестановки с повторениями.

Порядок выполнения:

Соответствует этапам 1 – 3 задания.

Форма отчетности:

Отчёт сдаётся в печатном виде. В отчёте должны присутствовать:

- 1. Номер варианта индивидуального задания;
- 2. Цель работы:
- 3. Задание;
- 4. Поэтапное выполнения всех заданий варианта индивидуального задания;
- 5. Заключение.

Задания для самостоятельной работы:

Предусмотрены индивидуальным заданием обучающегося.

Рекомендации по выполнению заданий и подготовке к практическому занятию

Ознакомиться с теоретическим материалом, представленным в третьем разделе данной дисциплины.

Основная литература

- 1. Шевелев, Ю. П. Дискретная математика : учебное пособие для вузов / Ю. П. Шевелев. Санкт-Петербург : Лань, 2008. 592 с.
- 2. Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы : учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2010. 368 с.

Дополнительная литература

- 1. Основы дискретной математики : практикум / С. А. Дьяконица. Братск : БрГУ, 2015. 97 с.
- 2. Микони, С. В. Дискретная математика для бакалавра: множества, отношения, функции, графы: учебное пособие / С. В. Микони. Санкт-Петербург: Лань, 2012. 192 с.

Контрольные вопросы для самопроверки

1. дайте краткое описание решения задач комбинаторики с помощью перестановки без повторений и с повторениями.

Практическое занятие №6

Решение задач комбинаторики с помощью размещения без повторений и с повторениями.

Занятие проводится в интерактивной форме с разбором конкретных ситуаций.

Цель занятия:

Научится решать задачи комбинаторики с помощью размещения без повторений и с повторениями.

Задание:

- 1. изучить теоретические основы возок;
- 2. решить задачи комбинаторики с помощью размещения без повторений;
- 3. решить задачи комбинаторики с помощью размещения с повторениями.

Порядок выполнения:

Соответствует этапам 1-3 задания.

Форма отчетности:

Отчёт сдаётся в печатном виде. В отчёте должны присутствовать:

- 1. Номер варианта индивидуального задания;
- 2. Цель работы:
- 3. Задание;
- 4. Поэтапное выполнения всех заданий варианта индивидуального задания;

5. Заключение.

Задания для самостоятельной работы:

Предусмотрены индивидуальным заданием обучающегося.

Рекомендации по выполнению заданий и подготовке к практическому занятию

Ознакомиться с теоретическим материалом, представленным в третьем разделе данной дисциплины.

Основная литература

- 1. Шевелев, Ю. П. Дискретная математика : учебное пособие для вузов / Ю. П. Шевелев. Санкт-Петербург : Лань, 2008. 592 с.
- 2. Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы : учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2010. 368 с.

Дополнительная литература

- 1. Основы дискретной математики : практикум / С. А. Дьяконица. Братск : БрГУ, 2015. 97 с.
- 2. Микони, С. В. Дискретная математика для бакалавра: множества, отношения, функции, графы: учебное пособие / С. В. Микони. Санкт-Петербург: Лань, 2012. 192 с.

Контрольные вопросы для самопроверки

1. дайте краткое описание решения задач комбинаторики с помощью размещения без повторений и с повторениями.

Практическое занятие №7

Решение задач комбинаторики с помощью сочетания без повторений и с повторениями. Занятие проводится в интерактивной форме с разбором конкретных ситуаций.

Цель занятия:

Научится решать задачи комбинаторики с помощью сочетания без повторений и с повторениями.

Задание:

- 1. изучить теоретические основы возок;
- 2. решить задачи комбинаторики с помощью сочетания без повторений;
- 3. решить задачи комбинаторики с помощью сочетания с повторениями.

Порядок выполнения:

Соответствует этапам 1 – 3 задания.

Форма отчетности:

Отчёт сдаётся в печатном виде. В отчёте должны присутствовать:

- 1. Номер варианта индивидуального задания;
- 2. Цель работы:
- 3. Задание;
- 4. Поэтапное выполнения всех заданий варианта индивидуального задания;
- 5. Заключение.

Задания для самостоятельной работы:

Предусмотрены индивидуальным заданием обучающегося.

Рекомендации по выполнению заданий и подготовке к практическому занятию

Ознакомиться с теоретическим материалом, представленным в третьем разделе данной дисциплины.

Основная литература

- 1. Шевелев, Ю. П. Дискретная математика : учебное пособие для вузов / Ю. П. Шевелев. Санкт-Петербург : Лань, 2008. 592 с.
- 2. Асанов, М. О. Дискретная математика: графы, матроиды, алгоритмы : учебное пособие / М. О. Асанов, В. А. Баранский, В. В. Расин. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2010. 368 с.

Дополнительная литература

- 1. Основы дискретной математики : практикум / С. А. Дьяконица. Братск : БрГУ, 2015. 97 с.
- 2. Микони, С. В. Дискретная математика для бакалавра: множества, отношения, функции, графы : учебное пособие / С. В. Микони. Санкт-Петербург : Лань, 2012. 192 с.

Контрольные вопросы для самопроверки

1. дайте краткое описание решения задач комбинаторики с помощью сочетания без повторений и с повторениями.

10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Информационно-коммуникационные технологии (ИКТ) – преподаватель использует для:

- получения информации при подготовке к занятиям,
- создания презентационного сопровождения лекций;
- интерактивного общения;
- OC Windows 7 Professional;
- Microsoft Office 2007 Russian Academic OPEN No Level;
- Антивирусное программное обеспечение Kaspersky Security

При реализации дисциплины применяются инновационные технологии обучения, активные и интерактивные формы проведения занятий, указанные в разделах 3.2, 4.4.

11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Вид занятия	Наименование аудитории	Перечень основного оборудования	№ Лк, ПЗ
1	2	3	4
Лк	Лекционная аудитория	-	Лк 1-8
П3	Лекционная аудитория	-	ПЗ 1-7
СР	Ч33	Оборудование 15- CPU 5000/RAM 2Gb/HDD (Монитор TFT 19 LG 1953S- SF);принтер HP LaserJet P3005	-

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

1. Описание фонда оценочных средств (паспорт)

№ компе тенци и	Элемент компетенции	Раздел	Тема	ФОС
ОПК-3	способность владеть основными методами, способами и средствами получения, хранения, переработки информации.	1. Теория множеств и отношений.	множества. Задание множеств. Сравнение множеств. Операции над множествами. Свойства операций над множествами. 1.2 Булеан. Упорядоченные пары. Прямое произведение множеств.	Вопросы к зачету 1.1 – 1.2
		2. Булева алгебра и элементы математической логики.	2.1 Функции алгебры логики. Существенные и несущественные переменные. Элементарные булевы функции. 2.2 Свойства элементарных функций. Принципы двойственности. 2.3 Разложение булевой функции по переменным. Совершенные дизъюктивная и конъюктивная нормальные формы.	Вопросы к зачету 2.1 – 2.3
		 Комбинаторика Основы теории 	3.1 Элементы и основные правила комбинаторики. 3.2 Перестановки без повторений и с повторениями. 3.3 Размещения без повторений и с повторениями. 3.4 Сочетания без повторений и с повторениями. 4.1 Код Хэмминга.	Вопросы к зачету 3.1 – 3.4
		кодирования.	4.2 Самокорректирующиеся коды.	к зачету 4.1 – 4.2

2. Вопросы к зачету.

	2. Вопросы к зачету.				
№	Компетенции		вопросы к зачету	№ и наименование	
п/п	Код	Определение	DOM OCDI R JA IET	раздела	
1	2	3	4	5	
1.	ОПК-3	способность владеть основными методами, способами и средствами получения,	 1.1 Элементы и множества. Задание множеств. Сравнение множеств. Операции над множествами. Свойства операций над множествами. 1.2 Булеан. Упорядоченные пары. Прямое произведение множеств. 	1. Теория множеств и отношений.	
		хранения, переработки информации.	 2.1 Функции алгебры логики. Существенные и несущественные переменные. 2.2 Свойства элементарных функций. Принципы двойственности. 2.3 Разложение булевой функции по переменным. Совершенные дизъюктивная и конъюктивная нормальные формы. 	2. Булева алгебра и элементы математической логики.	
			 3.1 Элементы и основные правила комбинаторики. 3.2 Перестановки без повторений и с повторениями. 3.3 Размещения без повторений и с повторениями. 3.4 Сочетания без повторений и с повторениями. 4.1 Код Хэмминга. 	 3. Комбинаторика. 4. Основы теории 	
			4.1 Код хэмминга. 4.2 Самокорректирующиеся коды.	4. Основы теории кодирования.	

3. Описание показателей и критериев оценивания компетенций

Показатели	Оценка	Критерии
Знать (ОПК-3): - законы и методы накопления, передачи и обработки информации с помощью компьютера; основные физические явления. Уметь (ОПК-3): - использовать	отлично	Во время ответа обучающийся демонстрирует глубокое и прочное усвоение программного материала: знает законы и методы накопления, передачи и обработки информации с помощью компьютера; основные физические явления, умеет использовать возможности вычислительной техники и программного обеспечения, владеет основными методами работы на компьютере с использованием универсальных прикладных программ.
возможности вычислительной техники и программного обеспечения.	хорошо	Ответ содержит неточности. Дополнительные вопросы требуется, но обучающийся с ними справляется отлично.
Владеть (ОПК-3): - основными методами работы на компьютере с	удовлетворительно	Ответил только на один вопрос, либо слабо ответил на оба вопроса. На дополнительные вопросы отвечает неуверенно.
использованием универсальных прикладных программ.	неудовлетворительно	На оба вопроса обучающийся отвечает неубедительно. На дополнительные вопросы преподавателя также не может ответить.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности

Дисциплина «Дискретная математика» направлена на изучение основ дискретной математики, анализа теоретических и экспериментальных исследований в сфере профессиональной деятельности.

Изучение дисциплины «Дискретная математика» предусматривает:

- лекции;
- практические занятия;
- контрольную работу;
- самостоятельную работу обучающихся;
- зачет.

В ходе освоения раздела 1 «Теория множеств и отношений» обучающиеся должны изучить основные положения и определения множеств, сравнение множеств, операций над множествами. Знать основные положения и определения булеана, упорядоченных пар, прямого произведения множеств.

В ходе освоения раздела 2 «Булева алгебра и элементы математической логики» обучающиеся должны знать функции алгебры логики, существенные и несущественные переменные, свойства элементарных функций, принципы двойственности. Уметь разложить булеву функцию по переменным.

В ходе освоения раздела 3 «Комбинаторика» обучающиеся должны изучить элементы и основные правила комбинаторики, изучить основные положения и определения перестановки, размещения и сочетания без повторений и с повторениями.

В ходе освоения 4 раздела «Основы теории кодирования» обучающиеся должны изучить

основные положения и определения кода Хэмминга, а также самокорректирующихся кодов.

В процессе выполнения практических работ происходит закрепление знаний, формирование умений и навыков дисциплины дискретная математика.

Работа с литературой является важнейшим элементом в получении знаний по дисциплине. Прежде всего, необходимо воспользоваться списком рекомендуемой по данной дисциплине литературой. Дополнительные сведения по изучаемым темам можно найти в периодической печати и Интернете.

К зачету допускаются студенты, которые выполнили и оформили все практические работы.

Оценка знаний, умений, навыков осуществляется в процессе промежуточной аттестации обучающихся по дисциплине, которая осуществляется в виде зачета. Для оценивания знаний, умений, навыков используются ФОС по дисциплине, содержащие, вопросы к зачету.

Предусмотрено проведение аудиторных занятий в интерактивной форме в сочетании с внеаудиторной работой.

АННОТАЦИЯ

рабочей программы дисциплины Дискретная математика

1. Цель и задачи дисциплины

Целью изучения дисциплины является: формирование у обучающихся фундаментальных знаний в области дискретного анализа и выработка практических навыков по применению дискретной математики в инфокоммуникационных технологиях.

Задачи изучения дисциплины состоят в том, чтобы на примерах понятий, методов и алгоритмов дискретной математики продемонстрировать обучающимся действие законов материального мира, а также в формировании знаний и умений, которые образуют теоретический фундамент, необходимый для корректной постановки и решения проблем обработки информации в инфокоммуникационных технологиях и системах связи.

2. Структура дисциплины

2.1 Распределение трудоемкости по отдельным видам учебных занятий, включая самостоятельную работу:

Лк - 17 часов, $\Pi 3 - 34$ часов, CP - 57 часов,

Общая трудоемкость дисциплины составляет 108 часов, 3 зачетных единиц

- 2.2 Основные разделы дисциплины:
 - 1. Теория множеств и отношений.
 - 2. Булева алгебра и элементы математической логики.
 - 3. Комбинаторика.
 - 4. Основы теории кодирования.

3. Планируемые результаты обучения (перечень компетенций)

Процесс изучения дисциплины направлен на формирование следующих компетенций:

ОПК-3 - способность демонстрировать базовые знания в области естественнонаучных дисциплин, готовностью выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности; применять их для разрешения основные законы естествознания, методы математического анализа и моделирования, теоретического и экспериментального исследования.

4. Вид промежуточной аттестации: зачет.

Протокол о дополнениях и изменениях в рабочей программе на 20___-20___ учебный год

1. В рабочую программу по дисциплине вносятся следующие дополнения:		
2. В рабочую программу по дисциплине вносятся следующие изменения:		
Протокол заседания кафедры № от «» 20 г.,		
Заведующий кафедрой	(Ф.И.О.)	

Программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 11.03.02 Инфокоммуникационные технологии и системы связи от «6» марта 2015 г. №174

для набора 2015 года: и учебным планом ФГБОУ ВО «БрГУ» для очной формы обучения от «13» июля 2015г. № 475

для набора 2016 года: и учебным планом ФГБОУ ВО «БрГУ» для очной формы обучения от «06» июня 2016г. № 429

<u>для набора 2017 года</u>: и учебным планом ФГБОУ ВО «БрГУ» для очной формы обучения от «6» марта 2017г. № 125

<u>для набора 2018 года:</u> и учебным планом ФГБОУ ВО «БрГУ» для очной формы обучения от «12» марта 2018г. № 130

Программу составил (и):		
Ульянов А.Д. старший преподаватель кафе Ф.И.О., должность, ученое звание, (степен		(подпись)
Рабочая программа рассмотрена и утверждот «28» декабря 2018 г., протокол М	1 1	УТС (сокращенное наименование)
Заведующий кафедрой УТС (разработчик)	(подпись)	Игнатьев И.В. (Ф.И.О.)
СОГЛАСОВАНО:		
Заведующий выпускающей кафедрой	(подпись)	Игнатьев И.В. (<i>Ф.И.О.</i>)
Директор библиотеки	(подпись)	_ Сотник Т.Ф.
Рабочая программа одобрена методическогот «28» декабря 2018 г., протокол	(сокращенное на	
Председатель методической комиссии фак	ультета	Ульянов А.Д. (Ф.И.О.)
СОГЛАСОВАНО:		
Начальник учебно-методического управления		Г.П. Нежевец
Регистрационный №		