ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БРАТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра подъёмно-транспортных, строительных, дорожных машин и оборудования

‹	>>>	20 г.
		_ Е.И. Луковникова
Прор	ектор	по учебной работе
УТВ	ЕРЖД	(АЮ:

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ГИДРАВЛИКА И ГИДРОПНЕВМОПРИВОД

Б1.В.12

НАПРАВЛЕНИЕ ПОДГОТОВКИ

23.03.02 Наземные транспортно-технологические комплексы

ПРОФИЛЬ ПОДГОТОВКИ

Подъемно-транспортные, строительные, дорожные машины и оборудование

Программа академического бакалавриата

Квалификация (степень) выпускника: бакалавр

		СОДЕРЖАНИЕ ПРОГРАММЫ	Стр.
1.	ДИ	РЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ІСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ ЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	3
2.		ЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ОГРАММЫ	4
_			
3.	3.1 3.2	СПРЕДЕЛЕНИЕ ОБЪЕМА ДИСЦИПЛИНЫ	4
		трудоемкости	. 4
4.	CO	ДЕРЖАНИЕ ДИСЦИПЛИНЫ	5
т.	4.1	Распределение разделов дисциплины по видам учебных занятий	5
	4.2 4.3	Содержание дисциплины, структурированное по разделам и темам	. 8
	4.4	Практические занятия	8
	4.5.	Контрольные мероприятия: курсовая работа, контрольная работа	8
5. 6. 7.	K d PE: IIE CA	АТРИЦА СООТНЕСЕНИЯ РАЗДЕЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ БОРМИРУЕМЫМ В НИХ КОМПЕТЕНЦИЯМ И ОЦЕНКЕ ЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ	10 E 11
8.	HE ПЕ	ОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
		ІЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	12
9.		ГОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ	12
	9.1.	Методические указания для обучающихся по выполнению лабораторных	
		работ Методические указания по выполнению курсовой работы, контрольной работы	. 38
10	ПР	РЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ И ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ІСЦИПЛИНЕ	40
11	ДЛ	ІИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ІЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ІСЦИПЛИНЕ	. 40
Ι	Ірило	жение 1. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине	. 42
		жение 2. Аннотация рабочей программы дисциплины	48

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Вид деятельности выпускника

Дисциплина охватывает круг вопросов, относящихся к проектно-конструкторскому виду профессиональной деятельности выпускника в соответствии с компетенциями и видами деятельности, указанными в учебном плане.

Цель дисциплины

- осуществление информационного поиска по основам гидравлики и гидропневмопривода СДМ;
- участие в составе коллектива исполнителей при производстве и испытании гидроагрегатов СДМ.

Задачи дисциплины

- дать общие сведения об основных тенденциях и направлениях в развитии гидрооборудования, используемых на предприятиях строительного комплекса:
- дать общие сведения об основных научно-технических проблемах и перспективах развития науки и техники в области строительной индустрии.

Код	Содержание	Перечень планируемых результатов
компетенции	компетенций	обучения по дисциплине
1	2	3
ОПК-2	Способность применять современные методы исследования, оценивать и представлять результаты выполненной работы	знать: методики исследования конструкций наземных транспортнотехнологических систем; уметь: проводить исследования конструкций наземных транспортнотехнологических систем; владеть: методиками исследования конструкций наземных транспортно-
ПК-4	Способность в составе коллектива исполнителей участвовать в разработке конструкторско-технической документации новых или модернизируемых образцов наземных транспортнотехнологических машин и комплексов	технологических систем; знать: основы конструкторскотехнической документации новых или модернизируемых образцов наземных транспортно-технологических машин и комплексов; уметь: разрабатывать основы конструкторско-технической документации новых или модернизируемых образцов наземных транспортно-технологических машин и комплексов; владеть: навыками разработки конструкторско-технической документации новых или модернизируемых образцов наземных транспортно-технологических машин и комплексов.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина Б1.В.12 Гидравлика и гидропневмопривод относится к вариативной части. Дисциплина Гидравлика и гидропневмопривод базируется на знаниях, полученных при изучении дисциплин: Физика, Техническая физика.

Основываясь на изучении перечисленных дисциплин Гидравлика и гидропневмопривод представляет основу для изучения дисциплин: Эксплуатация ПТ СМДиО, Машины для земляных работ, Технология производства и ремонт ПТ СДМ

Такое системное междисциплинарное изучение направлено на достижение требуемого ФГОС уровня подготовки по квалификации бакалавр.

3. РАСПРЕДЕЛЕНИЕ ОБЪЕМА ДИСЦИПЛИНЫ

3.1. Распределение объема дисциплины по формам обучения

			Трудоемкость дисциплины в часах				Курсовая			
Форма обучения	Курс	Семестр	Всего часов (с экз.)	Аудиторных часов	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работа (проект), контроль ная работа, реферат, РГР	Вид промежу точной аттеста ции
1	2	3	4	5	6	7	8	9	10	11
Очная	-	-	-	-	-	-	-	-	-	-
Заочная	2	-	216	16	8	8	-	191	КР	экзамен
Заочная (ускоренное обучение)	-	-	-	-	-	-	-	-	-	-
Очно-заочная	-	-	-	_	-	-	-	-	-	-

3.2. Распределение объема дисциплины по видам учебных занятий и трудоемкости

Вид учебных занятий	Трудо- емкость (час.)	в т.ч. в интерактивной, активной, иннова- циионной формах, (час.)	Распределение по семестрам, час
1	2	3	4
I. Контактная работа обучающихся с преподавателем (всего)	16	16	16
Лекции (Лк)	8	8	8
Лабораторные работы (ЛР)	8	8	8
Курсовая работа	+	-	+
Контрольная работа	+	-	-
Групповые (индивидуальные) консультации	+	-	+
П.Самостоятельная работа обучающихся	191	-	191

(CP)			
Подготовка к лабораторным работам	95	-	95
Подготовка к экзамену в течение семестра	6	-	6
Выполнение курсовой работы	30	-	30
Выполнение контрольной работы	24		24
III. Промежуточная аттестация экзамен	27	-	27
Общая трудоемкость дисциплины час.	216	-	216
зач. ед.	6	-	6

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Распределение разделов дисциплины по видам учебных занятий - для заочной формы обучения:

<u>№</u> paз-	Наименование			занятий, включая учающихся и трудо	
дела	раздела и	Трудоемкость,	учебны	Самостоятельная	
и темы	тема дисциплины	(час.)	лекции	лабораторные работы	работа обучающихся
1	2	3	4	5	6
1.	Введение. Предмет гидравлики и краткая история ее развития.	12,5	0,5	1	14
2.	Основы гидростатики. Основы гидродинамики.	27	1	1	28
3.	Гидравлические сопротивления. Истечение жидкости из отверстий, насадков и из-под затворов.	27	1	1	28
4.	Гидравлический расчет простых трубопроводов.	11,5	0,5	-	14
5.	Гидравлические машины.	11,5	0,5	-	14
6.	Общая характеристика гидропривода. Рабочие жидкости для гидросистем. Гидравлические линии.	13,5	0,5	1	15
7.	Насосы и гидромоторы. Гидроцилиндры. Гидрораспределители	27	1	1	28

8.	Регулирующая и направляющая гидроаппаратура. Вспомогательные устройства гидросистем.	28	1	1	29
9.	Гидравлические следящие приводы (гидроусилители).	12,5	0,5	1	14
10.	Системы разгрузки насосов и регулирования гидродвигателей.	12,5	0,5	-	15
11.	Схемы типовых гидросистем.	11,5	0,5	-	14
12.	Пневматический привод.	12,5	0,5	1	14
	ИТОГО	207	8	8	191

4.2. Содержание дисциплины, структурированное по разделам и темам.

<u>№</u> раздела и темы	Наименование раздела и темы дисциплины	Содержание лекционных занятий	Вид занятия в интерактивной, активной, инновационной формах, (час.)
1	2	3	4
1.	Введение. Предмет гидравлики и краткая история ее развития.	Краткая история развития гидравлики. Жидкость и силы действующие на нее. Механические характеристики и основные свойства жидкостей	Лекция-диспут (2 час.)
2.	Основы гидростатики. Основы гидродинамики.	Гидростатическое давление. Основное уравнение гидростатики. Давление жидкости на плоскую наклонную стенку. Давление жидкости на цилиндрическую поверхность. Закон Архимеда и его приложение. Поверхности равного давления Основные понятия о движении жидкости. Уравнение Бернулли для идеальной жидкости. Уравнение Бернулли для реальной жидкости. Измерение скорости потока и расхода жидкости.	-
3.	Гидравлические сопротивления. Истечение жидкости из отверстий, насадков и из-под затворов.	Режимы движения жидкости. Кавитация. Потери напора при ламинарном течении жидкости. Потери напора при турбулентном течении жидкости. Местные гидравлические сопротивления Истечение через малые отверстия в тонкой стенке при постоянном напоре. Истечение при несовершенном сжатии. Истечение под уровень. Истечение через насадки при постоянном напоре. Истечения через	-

4.	Гидравлический расчет простых	отверстия и насадки при переменном напоре (опорожнение сосудов). Истечение из-под затвора в горизонтальном лотке. Давление струи жидкости на ограждающие поверхности. Простой трубопровод постоянного сечения. Соединения простых	Разбор конкретных
	трубопроводов.	трубопроводов. Сложные трубопроводы. Трубопроводы с насосной подачей жидкостей. Гидравлический удар. Изменение пропускной способности трубопроводов в процессе их эксплуатации	ситуаций (2 час.)
5.	Гидравлические машины.	Лопастные насосы. Поршневые насосы. Индикаторная диаграмма поршневых насосов. Баланс энергии в насосах. Обозначение элементов гидро- и пневмосистем.	-
6.	Общая характеристика гидропривода. Рабочие жидкости для гидросистем. Гидравлические линии.	Структурная схема гидропривода. Классификация и принцип работы гидроприводов. Преимущества и недостатки гидропривода. Характеристика рабочих жидкостей. Выбор и эксплуатация рабочих жидкостей. Гидравлические линии. Соединения. Расчет гидролиний.	-
7.	Насосы и гидромоторы. Гидроцилиндры. Гидрораспределители	Некоторые термины и определения. Гидравлические машины шестеренного типа. Пластинчатые насосы и гидромоторы. Радиально-поршневые насосы и гидромоторы. Аксиально-поршневые насосы и гидромоторы. Механизмы с гибкими разделителями. Классификация гидроцилиндров. Гидроцилиндры прямолинейного действия. Расчет гидроцилиндров. Поворотные гидроцилиндры. Общие сведения. Золотниковые гидрораспределители. Крановые гидрораспределители. Клапанные гидрораспределители.	Разбор конкретных ситуаций (2 час.)
8.	Регулирующая и направляющая гидроаппаратура. Вспомогательные устройства гидросистем	Общие сведения о гидроаппаратуре. Напорные гидроклапаны. Редукционный клапан. Обратные гидроклапаны. Ограничители расхода. Делители (сумматоры) потока. Дроссели и регуляторы расхода Гидробаки и теплообменники. Фильтры. Уплотнительные устройства. Гидравлические аккумуляторы. Гидрозамки. Гидравлические реле давления и времени. Средства измерения.	-
9.	Гидравлические следящие приводы (гидроусилители).	Общие сведения. Классификация гидроусилителей. Гидроусилитель золотникового типа. Гидроусилитель с соплом и заслонкой. Гидроусилитель со струйной трубкой. Двухкаскадные усилители.	-

10.	Системы разгрузки	Способы разгрузки насосов от давления.	Разбор
	насосов	Дроссельное регулирование. Объемное	конкретных
	и регулирования	регулирование. Комбинированное	ситуаций
	гидродвигателей.	регулирование. Сравнение способов	(2 час.)
		регулирования.	
11.	Схемы типовых	Гидросистемы с регулируемым насосом и	-
	гидросистем.	дросселем. Гидросистемы с	
		двухступенчатым усилением.	
		Гидросистемы непрерывного	
		(колебательного) движения.	
		Электрогидравлические системы с	
		регулируемым насосом. Гидросистемы с	
		двумя спаренными насосами. Питание	
		одним насосом двух и несколько	
		гидродвигателей	
12.	Пневматический	Общие сведения о применении газов в	Разбор
	привод.	технике. Особенности пневматического	конкретных
		привода, достоинства и недостатки.	ситуаций
		Течение воздуха. Исполнительные	(2 час.)
		пневматические устройства	

4.3. Лабораторные работы.

N <u>º</u> n/n	Номер раздела дисциплины	Наименование лабораторных работ	Объем (час.)	Вид занятия в интерактивной, активной, инновационной формах, (час.)
1	1.	Изучение физических свойств жидкости	1	исследовательская деятельность (1 час.)
2	3.	Иллюстрация уравнения Бернулли	1	исследовательская деятельность (1 час.)
3	7.	Объемный насос. Напорный (переливной) клапан	1	исследовательская деятельность (1 час.)
4	8.	Управление усилием на исполнительном механизме	1	исследовательская деятельность (1 час.)
5	9.	Управление скоростью движения исполнительного механизма	2	исследовательская деятельность (2 час.)
6	12.	Прямое и непрямое управление пневмоцилиндрами ИТОГО	2	исследовательская деятельность (2 час.)

4.4. Практические занятия.

Не предусмотрены.

4.5. Контрольные мероприятия: контрольная работа, курсовая работа.

Контрольная работа учебным планом не предусмотрена

Цель курсовой работы: углубление и расширение познаний студентов в области гидравлики и гидропневмопривода СДМ, научить их правильно принимать инженерные

решения, обоснованные расчетами, а также научить пользоваться соответствующей научнотехнической литературой, подготовить студента к выполнению выпускной квалификационной работы.

Структура:

Отчёт по курсовой работе должен иметь следующую структуру:

- титульный лист;
- задание на отдельном листе;
- содержание;
- список использованных сокращений и обозначений;
- введение [1-2 стр.];
- основная часть;
- заключение [1 стр.];
- список использованных источников.

Основная тематика: Проектирование гидравлической схемы крана (по варианту).

При защите курсовой работы обучающийся должен не только правильно излагать свои мысли, но и аргументировано отстаивать, защищать выдвигаемые выводы и решения.

Рекомендуемый объем: составлять 20-30 страниц печатного текста, графическая часть 1 лист формат – A1.

Выдача задания и прием курсовой работы проводятся в соответствии с календарным учебным планом.

Оценка	Критерии оценки курсовой работы							
Отлично	Обучающийся продемонстрировал усвоение ранее изученных							
	сопутствующих вопросов, сформированность и устойчивость							
	используемых при ответе умений и навыков: умение							
	иллюстрировать теоретические положения конкретными примерами,							
	применять их при выполнении практического задания; отвечал							
	самостоятельно без наводящих вопросов преподавателя. Структура							
	оформления курсовой работы соблюдена.							
Хорошо	При защите курсовой работы обучающийся допустил небольшие							
	пробелы, не исказившие логического и информационного							
	содержания ответа: один-два недочета при освещении основного							
	содержания, исправленные по замечанию преподавателя; при ответе							
	на дополнительные вопросы допущено не более 2-3 ошибок.							
	Структура оформления курсовой работы соблюдена.							
удовлетворительно	Содержание материала раскрыто не полностью, но показано общее							
	понимание темы курсовой работы, продемонстрированы умения,							
	достаточные для дальнейшего усвоения программного материала,							
	обучающийся продемонстрировал затруднения или допустил ошибки							
	в определении понятий, использовании терминологии, расчетов,							
	исправленные после нескольких наводящих вопросов преподавателя;							
	при проверке знаний теоретического материала выявлена							
	недостаточная сформированность основных умений и навыков. При							
	оформлении курсовой работы допущены ошибки.							
неудовлетворительно	Не раскрыто основное содержание курсовой работы, обнаружено							
	незнание или непонимание обучающимся большей или наиболее							
	важной части учебного материала. При дополнительной							
	самостоятельной работе над материалом курса возможно повышение							
	качества выполнения курсовой работы							

5. МАТРИЦА СООТНЕСЕНИЯ РАЗДЕЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ К ФОРМИРУЕМЫМ В НИХ КОМПЕТЕНЦИЯМ И ОЦЕНКЕ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Компетенции	1	Компен				Вид	
№, наименование	Кол-во	ПК	ОПК	Σ	t_{cp} , час	учебных	Оценка
разделов дисциплины	часов	4	2	комп.	сер, те	занятий	результатов
1	2	3	4	5	6	7	8
1. Введение. Предмет гидравлики и	13	+	+	2	6,5	ЛК, ЛР, СР	экзамен, кр
краткая история ее развития.					,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
2. Основы гидростатики.	26	+	+	2	13	ЛК, ЛР, СР	экзамен, кр
Основы гидродинамики.						- ,- , -	, , r
3. Гидравлические сопротивления.	34	+	+	2	17	ЛК, ЛР, СР	экзамен, кр
Истечение жидкости из отверстий,						, ,	, 1
насадков и из-под затворов.							
4. Гидравлический расчет простых	12	+	+	2	5,5	ЛК, СР	экзамен, кр
трубопроводов.					,	,	, 1
5. Гидравлические машины.	11	+	+	2	5,5	ЛК, СР	экзамен, кр
6. Общая характеристика	15	+	+	2	6,5	ЛК, ЛР, СР	экзамен, кр
гидропривода. Рабочие жидкости для					,	, ,	/ I
гидросистем. Гидравлические линии.							
7. Насосы и гидромоторы.	25	+	+	2	12,5	ЛК, ЛР, СР	экзамен, КР
Гидроцилиндры. Гидрораспределители							
8. Регулирующая и направляющая	24	+	+	2	11,5	ЛК, ЛР, СР	экзамен, КР
гидроаппаратура. Вспомогательные							
устройства гидросистем							
9. Гидравлические следящие приводы	14	+	+	2	7,5	ЛК, ЛР, СР	экзамен, КР
(гидроусилители).							
10. Системы разгрузки насосов	11	+	+	2	5,5	ЛК, СР	экзамен, КР
и регулирования гидродвигателей.							
11. Схемы типовых гидросистем.	11	+	+	2	5,5	ЛК, СР	экзамен, КР
12. Пневматический привод.	20	+	+	2	11,5	ЛК, ЛР, СР	экзамен, КР
1 ,,					·	,,	
всего часов	216	108	108	2	108		

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

1. Гидравлические и пневматические машины : учебное пособие / Кононов А.А., Федоров В.С., Кобзов Д.Ю., Лобанов Д.В. – Братск: ФГБОУВО «БрГУ». – 2015. – 196 с. http://ecat.brstu.ru/catalog/учебные%20и%20учебно-

методические%20пособия/техника/кононов%20а.а.%20гидравлические%20и%20пневматичес кие%20машины.уч.пособие.2015.pdf

2. Основы гидравлики: учебное пособие / Кононов А.А., Федоров В.С., Кобзов Д.Ю., Лобанов Д.В. – Братск: ФГБОУВО «БрГУ». – 2015. – 92 с.

http://ecat.brstu.ru/catalog/Учебные%20и%20учебно-

методические%20пособия/Техника/Кононов%20А.А.%20Гидравлические%20и%20пневмати ческие%20машины.Уч.пособие.2015.pdf

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ,

НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

№	Наименование издания (автор, заглавие, выходные данные)	Вид заня- тия	Количе ство экземп ляров в библио теке, шт.	Обеспечен- ность, (экз./ чел.)
	Основная литература			
	Удовин, В.Г. Гидравлика: учебное пособие / В.Г. Удовин, И.А. Оденба; Министерство образования и науки Российской Федерации. – Оренбург.: ОГУ, 2014 – 132 с.: схем, ил. – Библиогр. в кн.; То же [Электронный ресурс]. URL: http:biblioclub.ru/index.php?page=book&id=330600	Лк, ЛР, кр, КР, СР	ЭР	1
	Штеренлихт, Д. В. Гидравлика [Электронный ресурс].: учеб. — Электрон. дан. — Санкт-Петербург.: Лань, 2015. — 656 с. — Режим доступа: http://e.lanbook.com/book/64346	Лк, ЛР, КР, СР	ЭР	1
	Дополнительная литература			
	Гидравлика, гидромашины и гидроприводы.: учебник / Т.М. Башта, С.С. Руднев [и др.]. – 2-е изд., перераб. – Москва: Машиностроение, 1982. – 423 с.	Лк, кр, КР, СР	528	1
	Козырь, И.Е. Практикум по гидравлике [Электронный ресурс]: учеб. метод. пособие/И.Е. Козырь, И.Ф. Пикалова, Н.В. Ханов. — Электрон. дан. — Санкт-Петербург.: Лань, 2016. — 176 с. — Режим доступа http://e.lanbook.com/book/72985	ЛР, кр, КР, СР	ЭР	1
	Крестин, Е.А. Задачник по гидравлике с примерами расчетов [Электронный ресурс]: учеб. пособие/ Е.А. Крестин, И.Е. Крестин. – Электрон. дан. – Санкт-Петербург.: Лань, 2018. – 320 с. – Режим доступа http://e.lanbook.com/book/98240	ЛР, КР, СР	ЭР	1

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО - ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ» НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1. Электронный каталог библиотеки БрГУ

http://irbis.brstu.ru/CGI/irbis64r_15/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=BOOK&P21DBN=BOOK&S21CNR=&Z21ID=.

2. Электронная библиотека БрГУ

http://ecat.brstu.ru/catalog.

- 3. Электронно-библиотечная система «Университетская библиотека online» http://biblioclub.ru .
 - 4. Электронно-библиотечная система «Издательство «Лань» http://e.lanbook.com .
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru .
 - 6. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru.
- 7. Университетская информационная система РОССИЯ (УИС РОССИЯ) https://uisrussia.msu.ru/.
 - 8. Национальная электронная библиотека НЭБ http://xn--90ax2c.xn--p1ai/how-to-search/.

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

В ходе лекционных занятий вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации.

Желательно оставить в рабочих конспектах поля, на которых делать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений. Задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.

В ходе подготовки к лабораторным работам изучить основную литературу, ознакомиться с дополнительной литературой, новыми публикациями в периодических изданиях: журналах, газетах и т.д. При этом учесть рекомендации преподавателя и требования учебной программы. Дорабатывать свой конспект лекции, делая в нем соответствующие записи из литературы, рекомендованной преподавателем и предусмотренной учебной программой.

Лабораторные работы выполняются группами из 2-3 человек.

Отчеты по лабораторным работам должны содержать:

- 1. Цель работы.
- 2. Задание.
- 3. Принципиальная схема работы лабораторной установки.
- 4. Поэтапное выполнение задания.
- 5. Заключение.

При подготовке к экзамену (в конце семестра) повторять пройденный материал в строгом соответствии с учебной программой, примерным перечнем учебных вопросов, выносящихся на зачет и содержащихся в данной программе. Использовать конспект лекций и литературу, рекомендованную преподавателем. Обратить особое внимание на темы учебных занятий, пропущенных студентом по разным причинам. При необходимости обратиться за консультацией и методической помощью к преподавателю.

В учебном процессе выделяют два вида самостоятельной работы:

- аудиторная;

- внеаудиторная.

Аудиторная самостоятельная работа по дисциплине выполняется на учебных занятиях под непосредственным руководством преподавателя и по его заданию.

Внеаудиторная самостоятельная работа выполняется обучающимся по заданию преподавателя, но без его непосредственного участия.

Содержание внеаудиторной самостоятельной определяется в соответствии с рекомендуемыми видами заданий согласно примерной и рабочей программ учебной дисциплины.

Видами заданий для внеаудиторной самостоятельной работы являются:

- *для овладения знаниями*: чтение текста (учебника, первоисточника, дополнительной литературы), составление плана текста, графическое изображение структуры текста, конспектирование текста, выписки из текста, работа со словарями и справочниками, ознакомление с нормативными документами, учебно-исследовательская работа, использование аудио- и видеозаписей, компьютерной техники и Интернета и др.
- для закрепления и систематизации знаний: работа с конспектом лекции, обработка текста, повторная работа над учебным материалом (учебника, первоисточника, дополнительной литературы, аудио и видеозаписей, составление плана, составление таблиц для систематизации учебною материала, ответ на контрольные вопросы, заполнение рабочей тетради, аналитическая обработка текста (аннотирование, рецензирование, реферирование, конспект-анализ и др), подготовка мультимедиа сообщений/докладов к выступлению на семинаре (конференции), подготовка реферата, составление библиографии, тематических кроссвордов, тестирование и др.
- для формирования умений: решение задач и упражнений по образцу, решение вариативных задач, выполнение чертежей, схем, выполнение расчетов (графических работ), решение ситуационных (профессиональных) задач, подготовка к деловым играм, проектирование и моделирование разных видов и компонентов профессиональной деятельности, опытно экспериментальная работа, рефлексивный анализ профессиональных умений с использованием аудио- и видеотехники и др.

Самостоятельная работа осуществляется индивидуально или группами студентов в зависимости от цели, объема, конкретной тематики самостоятельной работы, уровня сложности, уровня умений студентов.

Контроль результатов внеаудиторной самостоятельной работы обучающихся может осуществляться в пределах времени, отведенного на обязательные учебные занятия по дисциплине и внеаудиторную самостоятельную работу студентов по дисциплине, может проходить в письменной, устной или смешанной форме.

9.1. Методические указания для обучающихся по выполнению лабораторных работ.

Отчеты по лабораторным работам оформляется на листах формата А4. Отчеты должны содержать:

- 1. Цель работы.
- 2. Задание.
- 3. Принципиальная схема работы лабораторной установки.
- 4. Поэтапное выполнение задания.
- 5. Заключение.

Лабораторная работа № 1

Изучение физических свойств жидкости

<u>Цель работы:</u> Освоение техники измерения плотности, теплового расширения, вязкости и поверхностного натяжения жидкостей.

<u>Задание:</u> измерить плотность, тепловое расширение, вязкость и поверхностное натяжение жидкостей, подготовить протоколы отчетов.

Порядок выполнения:

Общие сведения

Жидкостью называют малосжимаемое тело, изменяющее свою форму под действием весьма малых сил. Основные характеристики жидкости – плотность, сжимаемость, тепловое расширение, вязкость и поверхностное натяжение

Плотностью – отношение массы m жидкости k ее объему W: $\rho = m/W$.

Сжимаемость — свойство жидкости уменьшать объем под действием давления. Она оценивается коэффициентом сжимаемости β_P , показывающим относительное уменьшение объема жидкости W при повышении давления p на единицу: $\beta_P = (\Delta W/W)/\Delta p$.

Tепловое расширение — свойство жидкости изменять объем при нагревании — характеризуется коэффициентом теплового расширения β_T , равным относительному приращению объема W с изменением температуры T на один градус при постоянном давлении: $\beta_T = (\Delta W/W)/\Delta T$. Как правило, при нагревании объем жидкости увеличивается.

Вязкость – свойство жидкости сопротивляться относительному скольжению ее слоев. Ее оценивают динамическим коэффициентом вязкости μ , который измеряется в паскаль – секундах (Па-с) и равен касательному напряжению между соседними слоями, если их относительная скорость перемещения численно совпадает с толщиной слоя. Кинематический коэффициент вязкости ν определяют из формулы $\nu = \mu/\rho$ и измеряют квадратными метрами на секунду (м²/с) или стоксами (1Ст=1cм²/с). Эти коэффициенты определяются видом жидкости, не зависят от скорости течения, существенно уменьшаются с возрастанием температуры.

Поверхностное натяжение — свойство жидкости образовывать поверхностный слой взаимно притяги- вающихся молекул - характеризуется коэффициентом поверхностного натяжения σ , равным силе на единице длины контура свободной поверхности. Значения ρ , β_P , β_T , ν и σ при 20°C указаны в табл.1.1.

Таблица 1.1

				-	гиотпіци т.т
Жидкость	$ ho$, kg/m 3	$eta_P \cdot 10^3$, M Π a ⁻¹	$\beta_T \cdot 10^3$, °C ⁻¹	$v \cdot 10^6$, m^2/c	σ·10³, H/м
Вода пресная	998	0,49	0,15	1,01	73
Спирт этиловый	790	0,78	1,10	1,52	23
Масло:		,	,	,	
моторное М-10	900	0,60	0,64	800	25
индустриальное 20	900	0,72	0,73	110	25
трансформаторное	890	0,70	0,70	30	25
$AM\Gamma - 10$	850	0,83	0,83	20	25

Описание устройства № 1

Устройство для изучения физических свойств жидкости содержит 5 приборов, выполненных в общем прозрачном корпусе (рис. 1.1), на котором указаны параметры для обработки опытных данных. Приборы 3-5 начинают действовать при перевертывании устройства № 1. Термометр 1 показывает температуру окружающей среды и, следовательно, температуру жидкостей во всех устройствах.

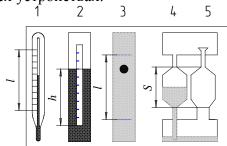


Рис. 1.1. - Схема устройства № 1:

1 – термометр; 2 – ареометр; 3 – вискозиметр Стокса; 4 – капиллярный вискозиметр; 5 – сталагмометр.

Определение коэффициента теплового расширения жидкости

Термометр 1 имеет стеклянный баллон с капилляром, заполненный термометрической жидкостью, и шкалу. Принцип его действия основан на тепловом расширении жидкостей. Варьирование температуры окружающей среды приводит к соответствующему изменению объема термометрической жидкости и ее уровня в капилляре. Уровень указывает на шкале значение температуры.

Коэффициент теплового расширения термометрической жидкости определяется в следующем порядке на основе мысленного эксперимента, т.е. предполагается, что температура окружающей среды повысилась от нижнего (нулевого) до верхнего предельных значений термометра и уровень жидкости в капилляре возрос на величину l.

- 1. Подсчитать общее число градусных делений ΔT в шкале термометра и измерить расстояние l между крайними штрихами шкалы.
- 2. Вычислить приращение объема термометрической жидкости $\Delta W = \pi r^2 l$, где r радиус капилляра термометра.
- 3. С учетом начального (при 0°С) объема термометрической жидкости W найти значение коэффициента теплового расширения $\beta_T = (\Delta W/W)/\Delta T$ и сравнить его со справочным значением β^*_T (табл. 1.1). Значения используемых величин занести в таблицу 1.2.

Таблица 1.2

						-	
Вид жидкости	<i>r</i> ,	<i>W</i> , см ³	Δ <i>T</i> , °C	l, cm	ΔW , cm ³	β_T , °C ⁻¹	β* _T , °C ⁻¹
Спирт							

Измерение плотности жидкости ареометром

Ареометр 2 служит для определения плотности жидкости поплавковым методом. Он представляет собой пустотелый цилиндр с миллиметровой шкалой и грузом в нижней части. Благодаря грузу ареометр плавает в исследуемой жидкости в вертикальном положении. Глубина погружения ареометра является мерой плотности жидкости и считывается со шкалы по верхнему краю мениска жидкости вокруг ареометра. В обычных ареометрах шкала отградуирована сразу по плотности.

В ходе работы выполнить следующие операции.

- 1. Измерить глубину погружения h ареометром по миллиметровой шкале на нем.
- 2. Вычислить плотность жидкости по формуле $\rho = 4m/(\pi d^2 h)$, где m и d масса и диаметр ареометра. Эта формула получена путем приравнивания силы тяжести ареометра G=mg и выталкивающей (архимедовой) силы $P_A=\rho gW$, где объем погруженной части ареометра $W=(\pi d^2/4)h$.
- 3. Сравнить опытное значение плотности ρ со справочным значением ρ^* (см. табл.1.1). Значения используемых величин свести в таблицу 1.3.

Таблица 1.3

Вид жидкости	т, г	<i>d</i> , cм	<i>h</i> , см	ρ, г/cm ³	ρ *, Γ /c M ³
Вода					

Определение вязкости вискозиметром Стокса

Вискозиметр Стокса 3 достаточно прост, содержит цилиндрическую емкость, заполненную исследуемой жидкостью, и шарик. Прибор позволяет определить вязкость жидкости по времени падения шарика в ней следующим образом.

- 1. Повернуть устройство № 1 в вертикальной плоскости на 180° и зафиксировать секундомером время t прохождения шариком расстояние l между двумя метками в приборе 3. Шарик должен падать по оси емкости без сопротивления со стенками. Опыт выполнить три раза, а затем определить среднеарифметическое значение времени t.
 - 2. Вычислить опытное значение кинематического коэффициента вязкости жидкости $v=gd^2t(\rho_w/\rho-1)/[18l+43.2l(d/D)],$

где g – ускорение свободного падения;

- d, D диаметры шарика и цилиндрической емкости;
- ρ , ρ_{w} плотности жидкости и материала шарика.

3. Сравнить опытное значение коэффициента вязкости v с табличным значением v^* (см. табл.1.1). Значение используемых величин свести в таблицу 1.4.

Таблица 1.4

Вид жидкости	ρ , kg/m ³	t, c	<i>l</i> , м	<i>d</i> , м	<i>D</i> , м	$ ho_{\it w}$, кг/ $ m M^3$	v, m ² /c	ν*, m ² /c
M-10					0,02			

Примечание. В устройстве № 1 вместо вискозиметра Стокса может быть встроен вискозиметр – плотномер конструкции ТГАСУ, в котором шарик падает с малым зазором в открытой с обоих концов трубке. В этом случае следует: зафиксировать время падения шарика t и перепад уровней жидкости h в цилиндрической емкости и трубке; вычислить

значения плотности жидкости $\rho = \rho_{uu}/(1+Ah)$ и кинематический коэффициент вязкости v = Bht, где A и B – постоянные прибора.

Измерение вязкости капиллярным вискозиметром

Капиллярный вискозиметр 4 включает емкость с капилляром. Вязкость определяется по времени исчечения жидкости из емкости через капилляр.

- 1. Перевернуть устройство № 1 (см. рис. 1.1) в вертикальной плоскости и определить секундомером время t истечения через капилляр объема жидкости между метками (высотой S) из емкости вискозиметра 4 и температуру T по термометру 1.
- 2. Вычислить значение кинематического коэффициента вязкости v=Mt (M- постоянная прибора) и сравнить его с табличным значением v^* (см. табл. 1.1). Данные свести в таблицу 1.5.

Таблица 1.5

Вид жидкости	$M, m^2/c^2$	t, c	$v, m^2/c$	T, °C	$v^*, m^2/c$
M-10					

Примечание. В табл. 1.1 приведены значения коэффициента вязкости жидкостей при температуре 20 °C. Поэтому опытные значения, полученные при другой температуре могут существенно отличаться от табличных значений.

Измерение поверхностного натяжения сталагмометром

Сталагмометр 5 служит для определения поверхностного натяжения жидкости методом отрыва капель и содержит емкость с капилляром, расширенным на конце для накопления жидкости в виде капли. Сила поверхностного натяжения в момент отрыва капли равна ее весу (силе тяжести) и поэтому определяется по плотности жидкости и числу капель, полученному при опорожнении емкости с заданным объемом.

- 1. Перевернуть устройство № 1 и подсчитать число капель, полученных в сталагмометре 5 из объема высотой S между двумя метками. Опыт повторить три раза и вычислить среднее арифметическое значение числа капель n.
- 2. Найти опытное значение коэффициента поверхностного натяжения $\sigma = K\rho/n$ (K постоянная сталагмометра) и сравнить его с табличным значением σ^* (см. табл. 1.1). Данные свести в таблицу 1.6.

Таблица 1.6

Вид жидкости	$K, M^3/c^2$	ρ, κγ/m ³	n	σ, Н/м	σ*, Н/м
M-10					

Форма отчетности:

Отчет.

Задания для самостоятельной работы:

- 1. Ознакомиться с текстом лекций.
- 2. Ответить на контрольные вопросы для самопроверки.

Основная литература:

[1,2] из раздела 7.

Дополнительная литература:

Контрольные вопросы для самопроверки

- 1. Что такое жидкость и на какие классы она подразделяется?
- 2. Понятие: удельный вес, плотность, вязкость жидкости и их единицы измерения.
- 3. Приборы для определения удельного веса (плотности) и вязкости жидкости.

Лабораторная работа № 2

Иллюстрация уравнения Бернулли

<u>Цель работы:</u> Опытное подтверждение уравнения Д. Бернулли, т.е. понижения механической энергии по течению и перехода потенциальной энергии в кинетическую и обратно (связи давления со скоростью).

Задание: выяснить соответствие изменений энергий уравнению Бернулли, подготовить протоколы отчетов.

Порядок выполнения:

Общие сведения

Уравнение Д. Бернулли выражает закон сохранения энергии и для двух сечений потока реальной жидкости в упрощенном виде записывается так:

$$P_1/(\rho g)+V_1^2/(2g)=P_2/(\rho g)+V_2^2/(2g)+h_{TP}$$

где P — давление; V — средняя скорость потока в сечении; ρ — плотность жидкости; g — ускорение свободного падения; h_{TP} — суммарные потери напора на преодоление гидравлических сил трения между сечениями 1-1и 2-2; индексы «1» и «2» указывают номер сечения, к которому относится величина.

Слагаемые уравнения выражают энергии, приходящиеся на единицу веса (силы тяжести) жидкости, которые в гидравлике принято называть напорами: $P/(\rho g) = H_n - n$ ьезометрический напор (потенциальная энергия), $V^2/(2g) = H_\kappa - c$ коростной напор (кинетическая энергия), $P/(\rho g) + V^2/(2g) = H - n$ олный напор (полная механическая энергия жидкости), h_{TP} — потери напора (механической энергии за счет ее преобразования в тепловую энергию). Такие энергии измеряются в единицах длины, т.к. \mathcal{J} эж/ \mathcal{H} = \mathcal{H} м/ \mathcal{H} = \mathcal{M} .

Из уравнения следует, что в случае отсутствия теплообмена потока с внешней средой полная удельная энергия (включая тепловую) неизменна вдоль потока, и поэтому изменение одного вида энергии приводит к противоположному по знаку изменению другого. Таков энергетический смысл уравнения Бернулли. Например, при расширении потока скорость V и, следовательно, кинетическая энергия $V^2/(2g)$ уменьшаются, что в силу сохранения баланса вызывает увеличение потенциальной энергии $P/(\rho g)$. Другими словами, понижение скорости потока V по течению приводит к возрастанию давления P, и наоборот.

Описание устройства № 4

Устройство № 4 содержит баки 1 и 2, сообщаемые через опытные каналы переменного 3 и постоянного 4 сечений (рис. 6.1). Каналы соединены между собой равномерно расположенными пьезометрами I-V, служащими для измерения пьезометрических напоров в характерных сечениях. Устройство заполнено подкрашенной водой. В одном из баков предусмотрена шкала 5 для измерения уровня воды.

При перевертывании устройства благодаря постоянству напора истечения H_O во времени, обеспечивается установившееся движение воды в нижнем канале. Другой канал в это время пропускает воздух, вытесняемый жидкостью из нижнего бака в верхний.

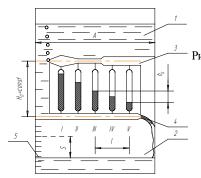


Рис. 6.1. Схема устройства № 4: 1, 2 — баки; 3, 4 — опытные каналы переменного и постоянного сечения; 5 — уровнемерная шкала; I-V — пьезометры

Порядок выполнения работы

- 1. При заполненном водой баке 2 (рис. 6.1) перевернуть устройство для получения течения в канале переменного сечения 3.
 - 2. Снять показания пьезометров $H_{\Pi} = P/(\rho g)$ по нижним частям менисков воды в них.
 - 3. Измерить время t перемещения уровня в баке на произвольно заданную величину S.
- 4. По размерам A и B поперечного сечения бака, перемещению уровня S и времени t определить расход Q воды в канале, а затем скоростные H_K и полные H напоры в сечениях канала по порядку, указанному в таблице 6.1.

Таблица 6.1

$\mathcal{N}_{\underline{0}}$	Наименование	Обозначения,			Сечен	ия кана	ла	·
Π/Π	величин	формулы	I	II	III	IV	V	VI
1.	Площадь сечения	ω						
2.	канала, см Средняя скорость, см/с Пьезометрический	$V=Q/\omega$						
3.	напор, см	$H_{\Pi}=P/(\rho g)$						
	Скоростной напор, см							
4.	Полный напор, см	$H_K=V^2/(2g)$						
5.		$H=P/(ho g)+V^2/(2g)$						

A = ... cm; B = ... cm; S = ... cm; t = ... c; Q = ABS/t = ... cm³/c

- 5. Вычертить в масштабе канал с пьезометрами (рис. 6.2). Соединив уровни жидкости в пьезометрах и центром выходного сечения VI, получить *пьезометрическую линию* 1, показывающую изменение потенциальной энергии (давления) вдоль потока. Для получения *напорной линии* 2 (линии полной механической энергии) отложить от оси канала полные напоры H и соединить полученные точки.
- 6. Проанализировать изменение полной механической H, потенциальной $P/(\rho g)$ и кинетической $V^2/(2g)$ энергий жидкости вдоль потока; выяснить соответствие этих изменений уравнению Бернулли.

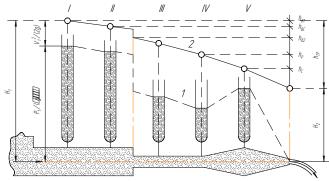


Рис. 6.2. - Иллюстрация уравнения Бернулли:

1, 2 – пьезометрическая и напорная линии; H_1, H_2 — полные напоры (механические энергии) на входе и выходе из канала; $h_{TP}, h_{\partial 1}, h_{\partial 2}, h_{BC}, h_P, h_C$ — потери напора: суммарные, по длине на $1^{\text{ом}}$ и $2^{\text{ом}}$ участках, на внезапное сужение, на плавные расширения и сужения.

Форма отчетности:

Отчет.

Задания для самостоятельной работы:

- 1. Ознакомиться с текстом лекций.
- 2. Ответить на контрольные вопросы для самопроверки.

Основная литература:

[1,2] из раздела 7.

Дополнительная литература:

[4,5] из раздела 7.

Контрольные вопросы для самопроверки

1. В чем заключается геометрический и энергетический (физический) смысл уравнений Бернулли для потоков идеальной и реальной жидкостей?

Лабораторная работа № 3

Объемный насос. Напорный (переливной) клапан

<u>Цель работы:</u> Познакомиться с конструкцией и условиями работы объемного насоса и напорного клапана в гидросистеме.

Задание: Научиться практически снимать гидравлические характеристики объемного насоса и напорного клапана, а также понимать особенности их совместной работы. Порядок выполнения:

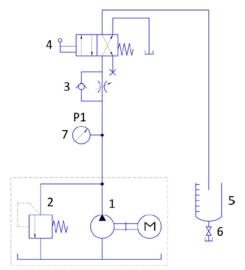


Рис.10.1 - Гидравлическая принципиальная схема проливки нерегулируемого объемного насоса:

На стенде-тренажере собирается схема для проливки объемного насоса. Проливке подлежит насос (1), расположенный внутри гидроагрегата. Предохранительный клапан (2) насоса настроен на давление **60** бар. Распределитель (4) служит для переключения потока масла на мерную емкость (5) для измерения расхода. Давление на выходе насоса P_1 устанавливается нагрузочным дросселем (3) и контролируется по манометру (7).

Перед включением гидростанции следует полностью открыть нагрузочный дроссель (3) и сливной кран (6) мерной емкости. Заданные в таблице 1 значения давления

устанавливают путем медленного закрытия дросселя (3), контролируя давление с помощью манометра (7).

Для измерения объемного расхода закрывают сливной кран (6) мерной емкости и включают гидростанцию. Распределитель (4) переключают на 20 с, направляя поток в мерную емкость. Затем регистрируют уровень масла, установившийся в мерной емкости. Расход Q (в л/мин) определяется умножением измеренного объема на 3.

Опыт повторяется 3 раза. Среднее значение расхода заносится в таблицу 1.

Затем регулировочным винтом нагрузочного дросселя (3) повышают давление P_1 до следующего значения в таблице 1 и повторяют опыт.

После заполнения таблицы 1 строится гидравлическая характеристика насоса в координатах $Q - \Delta p$ ($\Delta p = P_1 - P_{\text{едива}} = P_1$, т.к. давление слива $P_{\text{едива}} = 0$).

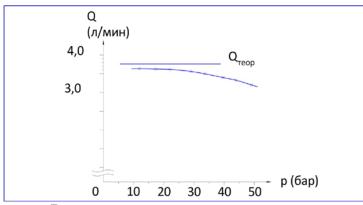

Характеристика объемного насоса.

Таблица 10.1.

Давление P_2	20	30	40	45	50	бар
V (3a 20 c)	1,20	1,15	1,08	1,05	1,0	Л
Q	3,6	3,45	3,24	3,15	3,0	л/мин

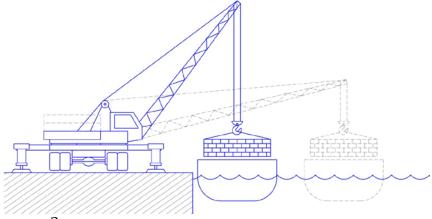
Для насосов, установленных в гидроагрегате стенда, $V_{\text{pag}} = 2$, cm^3 , тогда

$$Q_{\text{теор}} = V_{\text{раб}} \cdot n = 2.5 \text{ cm}^3/\text{об} \cdot 1490 \text{ об/мин} = 3,72 \text{ л/мин}$$

Выводы:

Теоретически характеристика насоса должна иметь вид прямой. Однако на практике при увеличении давления на выходе подача насоса уменьшается из-за внутренних утечек, которые при повышении давления увеличиваются.

Внутренние утечки могут достигать значительной величины у старых насосов, где детали изношены и зазоры увеличены.


Таким образом, существенное снижение скорости вращения валков могло произойти в результате износа насоса и, как следствие, существенных внутренних утечек.

Отношение измеренного значения подачи насоса к теоретической подаче насоса представляет собой объемный коэффициент полезного действия (КПД) насоса.

$$\eta = Q/Q_{\rm reop}$$

Ориентировочно объемный КПД исправных насосов лежит в пределах 0.8 - 0.9.

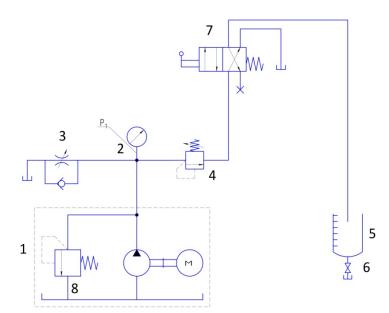
С целью обеспечения возможности погрузки с причала сразу двух барж необходимо увеличить противовес автокрана. Однако это требует увеличения давления в гидросистеме, которая вывешивает и горизонтирует автокран. Чтобы знать требуемую для этого величину давления, нужно иметь гидравлическую характеристику клапана.

Задание:

Предложить гидравлическую принципиальную схему для проливки напорного клапана.

Провести измерения согласно табл. 1 и 2.

Определить давление открытия напорного клапана.


Построить гидравлические характеристики (график зависимости $\Delta p - Q$) напорного клапана.

Рассмотреть совместную работу насоса и напорного (переливного) клапана.

Определить порядок настройки давления при вывешивании автокрана после установки дополнительного противовеса.

Характеристика напорного клапана.

Схема проливки объемного насоса набирается на аудиторной доске с помощью аппликационных моделей.

*) Справка.

Как правило, в гидросхемах присутствуют минимум два напорных клапана. На примере приведенной схемы это:

предохранительный (8) - установлен на гидроагрегате - предохраняет насос от разрушения при забросах давления (включается в работу очень редко),

переливной (4) - задает рабочий уровень давления в гидросистеме (постоянно в работе).

Конструктивно клапаны могут быть выполнены одинаково, отличаются только уровнем настройки давления срабатывания (у предохранительного - выше).

На стенде-тренажере собирается схема для проливки напорного (переливного) клапана (4).

Предохранительный клапан (8) насоса настроен на давление 60 бар. Распределитель (7) служит для переключения потока масла на мерную емкость (5) для измерения расхода. Давление на выходе насоса P_1 устанавливается нагрузочным дросселем (3) и контролируется по манометру (2).

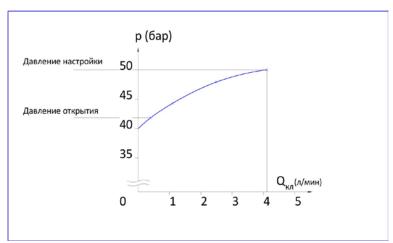
Дроссель (3) имитирует нагрузку, возникающую в реальном гидроприводе. После сборки и проверки гидравлической системы пружина переливного (испытуемого) клапана (4) посредством регулировочного винта отпускается до минимума. Дроссель (3) закрывается. Затем включают гидростанцию и регулировочным винтом переливного клапана устанавливают давление P_1 по манометру (2) равным 40 бар. В этом случае вся подача насоса проходит через переливной клапан на слив. Это очень важно подчеркнуть, т.к. именно такой режим работы напорного клапана отражает понятие «клапан настроен на давление 40 бар».

Для измерения объемного расхода закрывают сливной кран (6) мерной емкости. Распределитель (7) переключают на 20 с, направляя поток в мерную емкость. Затем регистрируют уровень масла, установившийся в мерной емкости. Расход Q (в л/мин) определяется умножением замеренного объема V на 3.

Опыт повторяется 3 раза. Среднее значение расхода Q заносится в таблицу 1 (см. ниже).

Далее дроссель (3) полностью открывают. Заданные в таблице 1 значения давления P_1 устанавливают путем постепенного закрытия дросселя, измеряя каждый раз соответствующие значения объемного расхода. В ходе экспериментов необходимо возможно более точно установить значение давления, при котором клапан начнет открываться. Это легко сделать, если наблюдать за моментом начала течения в мерную емкость при плавном повышении давления P_1 .

Таблица 10.2.


Давление P_1 (40)	25	30	33,5	35	37,5	40	бар
V (3a 20 c)	0	0	0,5	0,87	1,0	1,3	Л
Q	0	0	1,5	2,61	3,0	3,9	л/мин

Повторить эксперимент, настроив предварительно переливной клапан на давление $P_1 = 50$ бар и аналогично заполнив таблицу 2.

Таблица 10.3.

Давление P_1 (40)	35	40	42,5	45	47,5	50	бар
V (3a 20 c)	0	0,06	0,23	0,38	0,6	1,32	Л
Q	0	0,18	0,69	1,14	1,8	3,96	л/мин

По данным таблиц 1 и 2 строятся гидравлические характеристики клапана.

Выводы:

Каждый напорный клапан (и предохранительный, и переливной) имеет определенное давление открытия (обусловленное силой предварительного сжатия регулировочной

пружины), при котором через него начинается перетекание жидкости. Дальнейшее повышение давления в гидросистеме приводит к тому, что подача жидкости от насоса делится на два потока, один из которых уходит в систему, а другой через переливной (предохранительный) клапан на слив. При достижении давления настройки вся жидкость, подаваемая насосом, проходит через напорный клапан. В этом случае движения жидкости в гидросистеме нет, а давление - максимально!

Таким образом, настройка именно переливного клапана определяет максимальный уровень давления в гидросистеме.

В задаче с автокраном давление в гидросистеме должно быть повышено путем поджатия регулировочной пружины переливного клапана, причем величина давления должна быть такой, чтобы усилия, развиваемые цилиндрами, были достаточны для вывешивания автокрана с грузом. Иначе, если вывесить только автокран с противовесом, при подъеме груза давление в гидроцилиндрах увеличится, переливной клапан, настроенный только на давление от веса крана, откроется и гидравлическая жидкость будет уходить на слив. Гидроцилиндры «просядут», что может привести к аварии - опрокидыванию крана!

Характеристика переливного клапана после регулировки сместится параллельно самой себе в зону повышенного давления.

Таким образом, основной особенностью совместной работы в гидросистеме объемного нерегулируемого насоса и напорного переливного клапана является периодическое деление подачи насоса между гидросистемой (потребитель) и сливом через переливной клапан.

Наглядное представление об этом можно получить, наложив характеристику переливного клапана на характеристику объемного насоса.

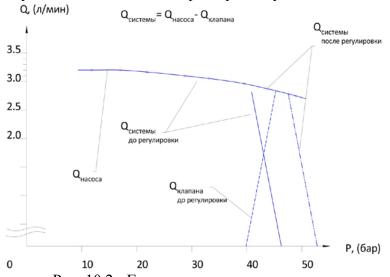


Рис. 10.2.- Гидравлическая характеристика гидроагрегата стенда-тренажера.

*) Примечание.

Выбор давления настройки переливного клапана, которым устанавливается максимальное давление во время лабораторной работы, должен быть как минимум на **10** бар меньше настройки предохранительного клапана, установленного на гидроагрегате и настроенного на **60** бар, иначе неизбежны ошибки при определении величины расхода в гидросистеме, т.к. часть расхода будет уходить не только через переливной, но и через предохранительный клапан.

Форма отчетности:

Отчет.

Задания для самостоятельной работы:

- 1. Ознакомиться с текстом лекций.
- 2. Ответить на контрольные вопросы для самопроверки.

Основная литература:

[1,2] из раздела 7.

Дополнительная литература:

[4,5] из раздела 7.

Контрольные вопросы для самопроверки

1. Как определить гидравлические характеристики объемного насоса?

Лабораторная работа № 4

Управление усилием на исполнительном механизме

<u>Цель работы:</u> Ознакомление с основными способами управления усилием на выходном звене исполнительных механизмов.

Задание: Изучение особенностей использования в гидросистемах клапанов давления: напорного и редукционного.

Порядок выполнения:

В долбежном станке зажим заготовок в тисках и подача инструмента осуществляются посредством гидроцилиндров соответственно **А** и **В**. Гидросистема станка содержит одну насосную установку. Однако усилия, развиваемые зажимным гидроцилиндром, должны иметь возможность настройки в соответствии с конструкцией обрабатываемой детали. Кроме того, должна регулироваться и скорость зажима.

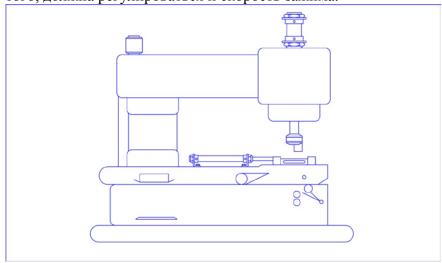
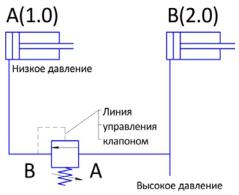


Рис.11.1 – Долбежный станок

Задание:


Необходимо разработать гидравлическую принципиальную схему приводов инструмента и зажимного приспособления.

Смоделировать систему на тренажере.

Провести измерения давлений. Значения измеряемых величин следует внести в заготовленные таблицы и на основании полученных результатов сформулировать выводы.

Поскольку в гидросистеме предполагается одновременно два уровня давления - высокий для привода долбежного инструмента и низкий для зажимного приспособления, то низкого уровня обычно достигают применением редукционного клапана. Именно редукционные клапаны, понижая давление, подаваемое на их вход, являются границей между двумя уровнями давления в гидросистеме. Очень важно, что колебания давления на входе в редукционный клапан никак не сказываются на давлении на выходе из него.

Таким образом, в общем виде гидросхема с использованием редукционного клапана будет выглядеть так:

Напомним, что редукционный клапан является нормально открытым клапаном (т.е. в нерабочем положении, «на складе», его залорно-регулирующий элемент отжат пружиной в открытое положение) и следит за настроенным давлением «после себя».

Редукционные клапаны бывают как двухлинейными, так и трехлинейными. В гидравлических приводах используют в основном только трехлинейные клапаны, имеющие дополнительное свойство предохранительного клапана относительна настроенного редуцированного давления.

Для решения поставленной задачи может быть предложена следующая принципиальная гидравлическая схема долбежного станка:

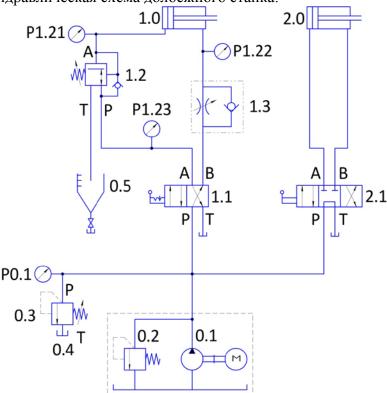


Рис. 11.2. - Гидравлическая принципиальная схема долбежного станка.

Предложить слушателям собрать схему на доске и самостоятельно объяснить порядок ее работы. Обратить внимание, что гидроцилиндр 1.0 служит для зажима детали, поэтому для управления им применен распределитель 4/2, т.к. промежуточных положений гидроцилиндра не требуется. И понижающий давление редукционный клапан 1.2 встроен в поршневую линию именно этого гидроцилиндра. Отметить назначение обратного клапана, встроенного в редукционный. В качестве распределителя 2.1 для гидроцилиндра 2.0 сверлильной головки используется распределитель 4/3 с линией Р перекрытой в среднем положении. Только при этом условии возможен надежный зажим детали.

Обратить внимание, что при проведении лабораторной работы на стенде-тренажере собирается схема целиком, а замеры проводятся исключительно на цепи управления гидроцилиндром 1.0, поскольку объектом исследования является только редукционный клапан 1.2, а именно - изменения давления до и после него.

Порядок настройки аппаратов при проведении опытов следующий.

Включают гидростанцию и переключают распределитель 1.1. После достижения штоком гидроцилиндра 1.0 переднего конечного положения редукционный клапан (1.2) настраивают так, чтобы манометр (P1.21) показывал 15 бар. При этом давление P0.1 должно составлять 50 бар. Далее выполняют первый и второй опыты.

Для третьего и четвертого опытов дроссель с обратным клапаном (1.3), используемый как элемент подпора, регулируют так, чтобы при прямом ходе штока манометр (P1.22) показывал 20 бар.

Для пятого опыта отсоединяют линию питания P, ведущую к редукционному клапану **1.2**, и наблюдают за течением в канале T редукционного клапана через стекло мерного бака. Обозначения к таблицам:

- 1. Дроссель (1.3) полностью открыт (давление при движении вперед)
- 2. Дроссель (1.3) полностью открыт (поршень в конечном положении)
- 3. Дроссель (1.3) отрегулирован так, что при выдвижении P1.22 = 20 бар
- 4. Поршень в конечном положении
- 5. Линия Р редукционного клапана отсоединена.

P1.21	1	2	3	4	5
Выдвижение	5	15	10	15	12
Втягивание	21	0	15	0	15
P1.22	1	2	3	4	5
Выдвижение	5	0	12	0	12
Втягивание	40	40	40	40	40
P1.23	1	2	3	4	5
Выдвижение	12	40	40	40	12
Втягивание	5	0	5	0	0

При выполнении первого опыта значения давления измеряют во время движения; настройка давления на входе (измеряемого как **P0.1**) должна производиться таким образом, чтобы давление **P1.21** составляло **15** бар, причем только тогда, когда поршень достигнет переднего конечного положения или остановится из-за сопротивления. Это отмечено в задании ко второму опыту -поршень в переднем конечном положении. Этот опыт показывает, что редукционный клапан поддерживает давление в **15** бар даже при отсутствии протока жидкости.

Обратный клапан, встроенный в редукционный, используется для его обхода, обеспечивая быстрый обратный ход штоку гидроцилиндра **1.0**.

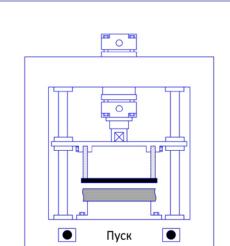
При наличии сопротивления выдвижению, как видно из третьего опыта, эффективное давление достигает только 12-15 бар несмотря на то, что давление настройки переливного клапана системы 0.3 составляет 50 бар. При закрытом дросселе (1.3) противодавпение может повышаться пишь до тех пор, пока показание манометра (P1.21) не станет равным 15 бар; при этом поршень останавливается, а редукционный клапан закрывается.

При обратном ходе, как видно из пятого опыта, повышающееся давление в канале A влечет за собой открытие какала T редукционного клапана, соединенного с мерным баком 0.5, в результате чего P1.21 достигает только давление настройки 15 бар. Так поршень продолжает движение до заднего конечного положения. Когда же поршень достигает втянутого положения, первоначально сохраняется давление 15 бар, но из-за внутренних перетечек в редукционном клапане давление падает ниже 15 бар, что влечет за собой изменение соединения каналов клапана с A к A на A как жидкость, подаваемая насосом, не поступает на вход A редукционного клапана, то давление падает до нуля.

Обратить внимание!

На практике вместо дросселя с обратным клапаном часто устанавливают предохранительный клапан с обратным клапаном. В результате предотвращается возникновение высоких значений противодавления при прямом ходе поршня (вследствие преобразования давления на поршне).

Однако, поскольку в нашем случае система запитывается редуцированным давлением, то и на сливе не может возникнуть чрезмерных давлений. Поэтому здесь применен дроссель с обратным клапаном. Кроме того, этот гидроаппарат значительно дешевле предохранительного клапана и потому зачастую применяют именно его.


Выводы:

Редукционные клапаны применяют в тех случаях, когда наряду с основным уровнем давления в системе требуется дополнительный уровень давления с постоянным, но меньшим давлением.

В пятом опыте показано, что скачки давления или повышения давления сверх установленной величины в канале \boldsymbol{A} редукционного клапана влекут за собой соединение этого канала внутри клапана с линией \boldsymbol{T} сброса в бак.

Постановка задачи.

При проведении переплетных работ в типографии используется гидропресс. Рабочее давление прессования должно регулироваться в зависимости от материала обложки и клеящего вещества, причем давление должно поддерживаться постоянным в течение всего времени прессования (при включенном гидрораспределителе).

Переплетный пресс

Задание:

Разработать гидравлическую принципиальную схему пресса с давлением прессования **30** бар:

- с предохранительным клапаном;
- с трехлинейным редукционным клапаном.

В обеих схемах клапан давления устанавливается непосредственно перед цилиндром.

Управление должно осуществляться посредством 4/3- распределителя.

Переливной клапан системы настроить на **50** бар. Смоделировать систему на тренажере

Дополнительные условия.

Сравнить показания манометра, установленного перед распределителем.

В чем принципиальное отличие схем?

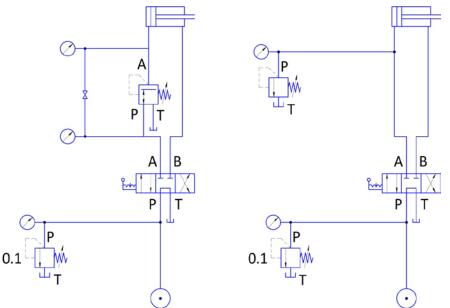


Рис.11.3.- Гидравлическая принципиальная схема. Переплетный пресс.

При использовании для понижения давления редукционного клапана на входе последнего (при условии, что объемная подача насоса достаточна) поддерживается давление **50** бар, определяемое настройкой переливного клапана системы. В случае, если от этой же гидростанции производится питание других гидродвигателей, только у гидродвигателя, перед которым установлен редукционный клапан, поддерживается давление жидкости **30** бар. Рабочее давление у остальных двигателей определяется настройкой переливного клапана.

Таким образом, в гидросистеме имеется два разных уровня давления.

Если же используется установленный перед гидродвигателем параллельно линии питания напорный (предохранительный) клапан, настроенный на **30** бар, то давление во всей гидросистеме при включенном **4/3**- распределителе составляет именно **30** бар (а не **50** бар, на которые настроен переливной клапан).

Зато при включенном распределителе и продолжительных выдержках времени насосу необходимо создавать давление только **30** бар - экономия энергии.

Примечание.

Для того чтобы был возможен обратный ход поршня, в обвод редукционного клапана должен быть установлен обратный клапан.

Форма отчетности:

Отчет.

Задания для самостоятельной работы:

- 1. Ознакомиться с текстом лекций.
- 2. Ответить на контрольные вопросы для самопроверки.

Основная литература:

[1,2] из раздела 7.

Дополнительная литература:

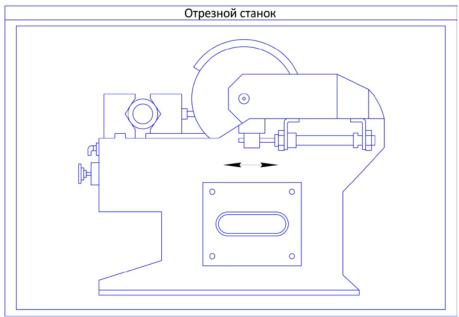
[4,5] из раздела 7.

Контрольные вопросы для самопроверки

1. Рассказать об основных способах управления усилием на выходном звене исполнительных механизмов.

Лабораторная работа № 5

Управление скоростью движения исполнительного механизма

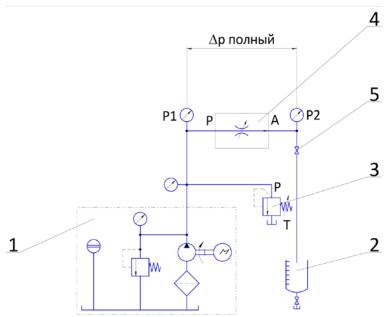

<u>Цель работы</u>: Ознакомление с работой гидроаппаратов, предназначенных для воздействия на расход рабочей жидкости (дроссель и регулятор расхода).

Задание: Изучение гидравлической характеристики регулятора расхода при переменном давлении на его входе и выходе. Сравнение характеристик гидропривода при использовании дросселя и регулятора расхода в схеме управления скоростью исполнительного механизма..

Порядок выполнения:

Подача дисковой пилы отрезного станка осуществляется посредством гидроцилиндра двустороннего действия. При разрезании круглой заготовки рабочее сопротивление нарастает от нуля до максимального значения и затем снова уменьшается до нуля.

Сравнить скоростные характеристики исполнительного механизма при использовании в гидросхеме дросселя и регулятора расхода для управления скоростью подачи инструмента.


Задание:

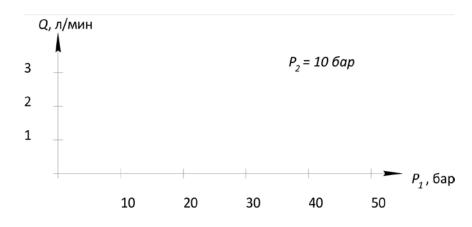
- А. Снять характеристику 2-х линейного регулятора расхода и сравнить качество его работы с дросселем.
 - Оценить целесообразность применения регулятора расхода в гидросхеме отрезного станка.
- Б. Предложить схему, в которой можно было бы обеспечить путем переключения распределителя либо равномерную подачу независимо от нагрузки на режущем инструменте, либо скорость подачи инструмента обратнопропорциональную нагрузке.

Дополнительные условия:

Практически определить скорость выдвижения штока гидроцилиндра при различных нагрузках для предложенной схемы.

- А. Снятие характеристики регулятора расхода.
- Собрать гидравлическую схему, приведенную на рисунке.

- Включить гидравлическую установку (1), закрыть регулируемый дроссель (5) и настроить переливной клапан (3) на 50 бар (5000 Па);
- Полностью открыть дроссель (5) и настроить регулятор расхода (4) на 2 л/мин, набирая в мерную емкость (2) 0.5 л за 15 с. Данная операция является приближенной по указанным значениям параметров (т.е. это может быть значение Q = 1.45; 1.78; 2.3 и т. д.). Это важно с точки зрения попадания в рабочую зону характеристики регулятора расхода.
- Записать значение **P**₂ в таблицу 1.
- Изменяя настройку дросселя (5), устанавливать последовательно значения P_2 согласно таблице 1


Таблица 12.1. - Переменное давление на выходе (имитация переменной нагрузки).

	1		-/1- (1	r · · · r j ·
P_{1}	P_2	$P_{1} - P_{2}$	Объем за 15 с	Q , (л/мин)
50	0			2
50	10			
50	20			
50	30			
50	40			
50	45			
50	50			

^{*} Не изменяя настройки регулятора расхода **4**, последовательно устанавливать с помощью переливного клапана **3** значения рг согласно таблице **2**, поддерживая на выходе регулятора расхода давление **10** бар дросселем **5**.

Таблица 12.2. - Переменное давление на входе (имитация колебания давления в сети).

P_{1}	$P_{1} - P_{2}$	P_2	Объем за 15 с	Q , (л/мин)
50		10		2
40		10		
30		10		
20		10		
10		10		

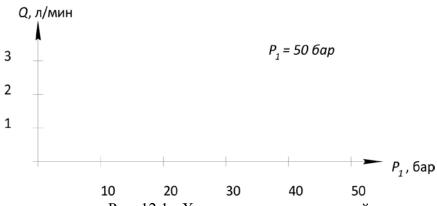


Рис. 12.1 - Характеристики двухлинейного регулятора расхода.

После оформления результатов работы повторить эксперимент, заменив регулятор расхода на регулируемый дроссель. Сравнить результаты и сделать вывод о целесообразности применения того или иного аппарата в отрезном станке.

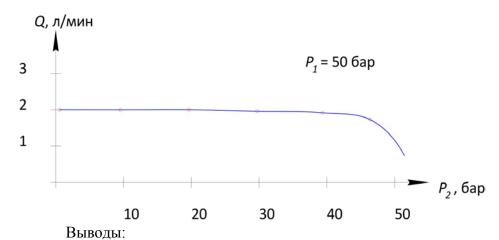

Решение: После проливки регулятора расхода и заполнения таблиц получим:

Таблица 12.3.- Переменное давление на выходе (имитация переменной нагрузки).

P_{1}	P_2	$P_{1} - P_{2}$	Объем за 15 с	Q , (л/мин)
50	?	?	0,5	2,0
50	10	40	0,5	2,0
50	20	30	0,47	1,88
50	30	20	0,48	1,92
50	40	10	0,44	1,76
50	45	5	0,37	1,48
50	50	0	0	0

Таблица 12.4.- Переменное давление на входе.

P_1	$P_{1} - P_{2}$	P_2	Объем за 15 с	Q , (л/мин)
50	40	10	0,5	2,0
40	30	10	0,5	2,0
30	20	10	0,48	1,92
20	10	10	0,45	1,80
10	0	10	0	0

Регулятор расхода поддерживает расход постоянным независимо от изменения давления, как перед ним, так и за ним.

Таким образом, для того чтобы скорость подачи дисковой пилы была обратно пропорциональна нагрузке, в гидросистеме должен быть установлен дроссель, т.к. регулятор расхода делает подачу инструмента независимой от нагрузки! Для равномерности хода на сливе целесообразно установить подпорный клапан.

Схема, которая позволяла бы обеспечить как зависимую от нагрузки подачу, так и равномерную подачу независимо от нагрузки на режущем инструменте, должна содержать в одном случае дроссель, а в другом - регулятор расхода. Этого можно добиться, установив их параллельно, а выбор того или иного гидроаппарата производить путем переключения распределителя, установленного на линии питания последовательно с основным распределителем. Такая схема представлена ниже.

Для практической проверки того, как реагирует гидросистема на установку дросселя или регулятора расхода при изменении нагрузки, собрать схему на стенде. Изменение нагрузки моделировать подпорным клапаном (как в предыдущем задании). Измерение времени хода производить после каждой настройки P_1 как для регулятора расхода, так и для дросселя, переключая 3/2- распределитель. Оба эти гидроаппарата предварительно должны быть отрегулированы таким образом, чтобы время прямого хода поршня без нагрузки составляло примерно 5 с.

Результаты измерений давлений и времени выдвижения штока заносятся в следующую таблицу.

D Gan	D Son	Время выд	D Son	
P_{mp} , бар	P₁ , бар	Рег. расхода	Дроссель	- Р _{пд} , бар
46	10	5	5,5	46
	20			
	30			
	40			
	45			

Результаты измерений выглядят следующим образом.

D Son	Д бол	Время выд	D for	
$P_{\rm mp}$, бар	P₁ , бар	Рег. расхода	Дроссель	$P_{\text{пд}}$, бар
46	10	5	5,5	46
46	20	5	6,5	47
46	30	5	7,6	48
47	40	5	9,7	49
48	45	6	12	49

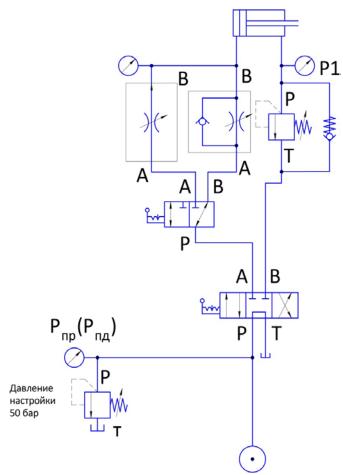


Рис.12.2. - Гидравлическая принципиальная схема.

По результатам измерений времени выдвижения штока видно, что двухлинейный регулятор расхода поддерживает постоянным время выдвижения практически при всех нагрузках. Только когда противодавление становится слишком сильным, перепад давления на регуляторе уменьшается настолько, что протекание через него неизменного расхода оказывается больше невозможным. Повышение давления перед регулятором расхода приводит к еще большему открытию переливного клапана и сбросу части жидкости, подаваемой насосом, на слив. Только теперь время прямого хода поршня увеличивается.

При использовании регулируемого дросселя время прямого хода гидроцилиндра увеличивается в соответствии с ростом противодействующего сопротивления. Поэтому для привода подачи отрезной пилы выбран дроссель.

*) Указания к схеме.

Перед разборкой схемы необходимо обратить внимание на то, чтобы показание манометра P_1 было нулевым. Для этого следует уменьшить до минимума усилие поджатия регулировочной пружины подпорного клапана и переключить 4/3-распределитель в позицию слива из напорной линии - разгрузить поршень цилиндра.

Форма отчетности:

Отчет.

Задания для самостоятельной работы:

- 1. Ознакомиться с текстом лекций.
- 2. Ответить на контрольные вопросы для самопроверки.

Основная литература:

[1,2] из раздела 7.

Дополнительная литература:

[4,5] из раздела 7.

Контрольные вопросы для самопроверки

1. Сравнить характеристики гидропривода при использовании дросселя и регулятора расхода в схеме управления скоростью исполнительного механизма.

Лабораторная работа № 6

Прямое и непрямое управление пневмоцилиндрами

<u>Цель работы:</u> Изучение основных способов управления певмоцилиндрами одностороннего и двухстороннего действия.

Задание: Изучение основных способов управления певмоцилиндрами одностороннего и двухстороннего действия

Порядок выполнения:

Обеспечить подачу заготовок на рабочую позицию сверлильного станка из накопителя посредством пневмопривода. При нажатии на пневматическую кнопку «Пуск» шток цилиндра выдвигается и перемещает заготовку из накопителя в рабочую позицию.

После отпускания пусковой кнопки шток возвращается в исходную позицию.

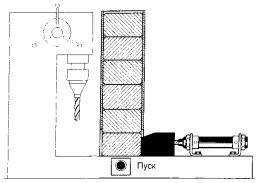
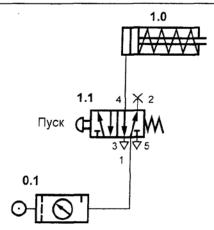


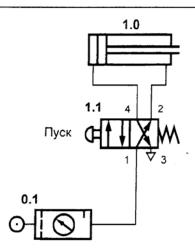
Рис. 13.1. – Сверлильный станок с механизированной подачей заготовок на рабочую позицию

Использование пневмоцилиндра одностороннего действия.

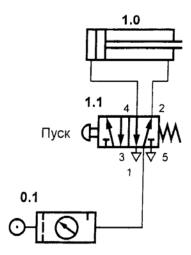

Подача заготовок на рабочую позицию сверлильного станка.

Подача заготовок на рабочую позицию сверлильного станка.

Поскольку замена 3/2 пневмораспределителя на 5/2


распределитель с одним заглушенным каналом потребителя часто применяется в более сложных системах из соображений унификации используемой элементной базы, а также при проведении экстренных ремонтных работ в условиях отсутствия нового 3/2 распределителя, следует рассмотреть и схему с использованием 5/2 распределителя.

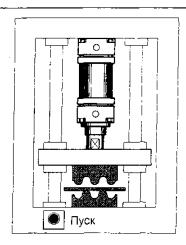
Использование пневмоцилиндра двухстороннего действия.



При нажатии на пневмокнопку «Пуск» (срабатывание 4/2 распределителя с ручным управлением) шток цилиндра выдвигается, перемещая заготовку на рабочую позицию сверлильного станка. После ее отпускания шток возвращается в исходную позицию. *Примечание*.В базовой комплектации тренажера отсутствует 4/2 распределитель с ручным управлением, поэтому моделировать схему следует с 5/2 пневмораспределителем.

Подача заготовок на рабочую позицию сверлильного станка.

Управление цилиндром двухстороннего действия 5/2 распределителем.

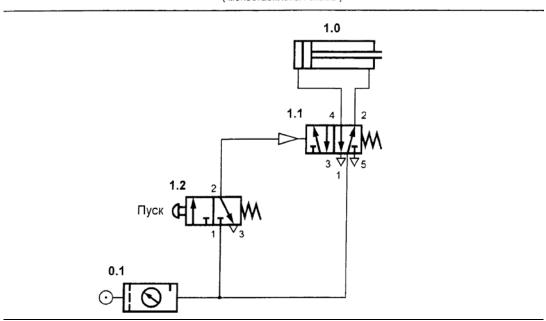


Непрямое управление.

Снабдить пресс для штамповки гофрированного металлического листа пневматическим приводом. При нажатии на пневматическую кнопку «Пуск» шток цилиндра выдвигается и, опуская пуансон, производит операцию штамповки.

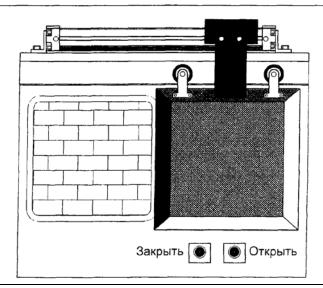
После отпускания пусковой кнопки шток возвращается в исходную позицию.

Пневмоприводной пресс для гофрирования металлического листа.

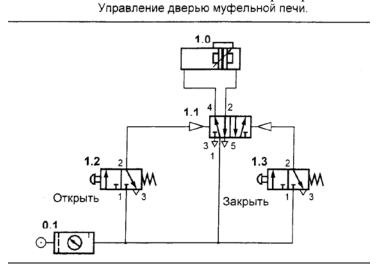


Задание: Разработать принципиальную пневматическую схему системы управления пресса на базе пневмоцилиндра двухстороннего действия. Смоделировать систему управления на тренажере.

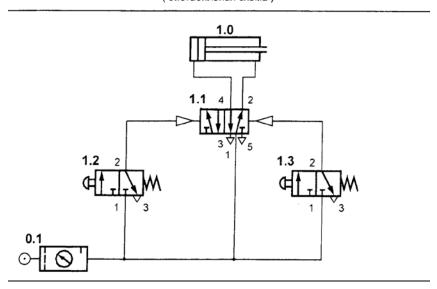
Для обеспечения необходимого усилия прессования должен быть использован цилиндр достаточно большого диаметра. При прямом управлении расход сжатого воздуха через пневматическую кнопку будет недостаточен для обеспечения быстрого выдвижения штока цилиндра, следовательно, необходимо применить непрямое управление пневмоцилиндром.


Пневмопривод пресса для гафрирования металлического листа.

Непрямое управление пневмоцилиндром двухстороннего действия (моностабильная схема)


В муфельной печи дверь должна приводиться в движение пневмоприводом на базе бесштокового пневмоцилиндра.

Закрытие и открытие двери производить кратковременным нажатием соответствующих пневмокнопок.



Задание: Разработать принципиальную пневматическую схему системы управления дверью муфельной печи на базе пневмоцилиндра двухстороннего действия. Смоделировать пневмопривод на тренажере.

Для того, чтобы дверь муфельной печи оставалась в положении «Открыто» или «Закрыто» после кратковременного нажатия соответствующих кнопок, управлять приводным пневмоцилиндром необходимо бистабильным 4/2 или 5/2 распределителем.

Примечание. В базовой комплектации тренажера отсутствует бесштоковыйпневмоцилиндр, поэтому моделировать схему следует используя пневмоцилиндр двухстороннего действия традиционной конструкции.

Форма отчетности:

Отчет.

Задания для самостоятельной работы:

- 1. Ознакомиться с текстом лекций.
- 2. Ответить на контрольные вопросы для самопроверки.

Основная литература:

[1,2] из раздела 7.

Дополнительная литература:

[4,5] из раздела 7.

Контрольные вопросы для самопроверки

1. Рассказать об основных способах управления певмоцилиндрами одностороннего и двухстороннего действия.

9.2. Методические указания по выполнению курсовой работы, контрольной работы

Выполнение обучающимися курсовой работы производится с целью:

- 1) систематизации и закрепления полученных теоретических знаний и практических умений;
 - 2) углубления теоретических знаний в соответствии с заданной темой;
- 3) формирования умений применять теоретические знания при решении поставленных вопросов;
 - 4) формирования умений использовать справочную, нормативную документацию;
- 5) развития творческой инициативы, самостоятельности, ответственности и организованности;

Тематика курсовых работ разрабатывается преподавателем.

Курсовая работа носит практический характер, который состоит из:

- 1) введения, в котором раскрывается актуальность и значение темы, формулируются цели и задачи работы;
- 3) основной части, которая обычно состоит из двух разделов: в первом разделе содержатся теоретические основы разрабатываемого приложения; вторым разделом является практическая часть, которая представлена расчетами, графиками, таблицами, схемами, формами и т.п.;

- 4) заключения, в котором содержатся выводы и рекомендации относительно возможностей практического применения материалов работы;
 - 5) списка используемой литературы;
 - 6) приложения.

Во введении (объемом 2-3 страницы) раскрывается актуальность и новизна темы, ее научная и практическая значимость, основные направления исследования, формулируются цели и задачи исследования, указываются предмет и объект исследования, а также характеризуются источники и материалы, использованные в процессе исследования.

Основная часть курсовой работы, как правило, состоит из теоретического и практического разделов. Основная часть должна содержать данные, отражающие сущность, методику и основные результаты выполненного исследования:

- выбор направления исследования, включающий обоснование принятого направления исследования, метода решения задач и их сравнительную оценку, разработку общей методики исследования;
- теоретические и (или) экспериментальные исследования, включающие определение характера и содержания теоретических исследований, методов исследований;
- обобщения и оценку результатов исследования, включающие оценку полноты решения поставленной задачи

Основную часть курсовой работы следует делить на разделы. Разделы основной части могут делиться на пункты или на подразделы и пункты. Пункты при необходимости могут делиться на подпункты. Каждый подпункт должен содержать законченную информацию.

Заключение (объемом не менее 2 страниц) должно содержать итоги работы, выводы, полученные в ходе работы, разработку рекомендаций по конкретному использованию результатов курсовой работы. Заключение должно быть кратким, обстоятельным и соответствовать поставленным целям и задачам.

Оформление курсовой работы: объём отчёта должен составлять 20-30 страниц печатного текста. Следует придерживаться следующих параметров оформления отчёта: формат листа отчёта – A4, размеры полей: слева 30 мм, справа 10 мм, сверху и снизу 20 мм. Шрифт Times New Roman, кегль 14. Абзацный отступ – 1,5 см, выравнивание абзаца – по ширине, межстрочный интервал – полуторный. Текст печатается только на одной стороне листа. Страницы должны быть пронумерованы внизу страницы справа. Нумерация страниц – сквозная для всего отчёта, на первом (титульном) листе номер не ставится.

Курсовая работа должна быть правильно оформлена, написана грамотно и аккуратно. Начинать работу нужно с тщательного изучения дисциплины в объеме программы. Далее необходимо подобрать соответствующий литературный и практический материал. В процессе написания можно привлечь дополнительную литературу. Не возбраняется использование переработанных данных электронных ресурсов. Работа должна быть логичной, научной по своему содержанию; в ней в систематизированной форме должны быть изложены материалы проведенного исследования и его результаты.

Выполнение обучающимися контрольной работы производится с целью:

- 1) систематизации и закрепления полученных теоретических знаний и практических умений;
 - 2) углубления теоретических знаний в соответствии с заданной темой.

Тематика контрольных работ разрабатывается преподавателем.

Контрольная работа состоит из:

- 1) основной части, которая обычно состоит из двух разделов: в первом разделе содержатся теоретические основы разрабатываемого приложения; вторым разделом является практическая часть, которая представлена расчетами, графиками, таблицами, схемами, формами и т.п.;
- 2) заключения, в котором содержатся выводы и рекомендации относительно возможностей практического применения материалов работы;
 - 3) списка используемой литературы.

Основная часть контрольной работы, как правило, состоит из теоретического и практического разделов. Основная часть должна содержать данные, отражающие сущность, методику и основные результаты выполненного исследования:

- выбор направления исследования, включающий обоснование принятого направления исследования, метода решения задач и их сравнительную оценку, разработку общей методики исследования;
- теоретические и (или) экспериментальные исследования, включающие определение характера и содержания теоретических исследований, методов исследований;
- обобщения и оценку результатов исследования, включающие оценку полноты решения поставленной задачи

Заключение должно содержать итоги работы, выводы, полученные в ходе работы, разработку рекомендаций по конкретному использованию результатов работы. Заключение должно быть кратким, обстоятельным и соответствовать поставленным целям и задачам.

Оформление контрольной работы: объём отчёта должен составлять 10-15 страниц печатного текста. Следует придерживаться следующих параметров оформления отчёта: формат листа отчёта – A4, размеры полей: слева 30 мм, справа 10 мм, сверху и снизу 20 мм. Шрифт Times New Roman, кегль 14. Абзацный отступ – 1,5 см, выравнивание абзаца – по ширине, межстрочный интервал – полуторный. Текст печатается только на одной стороне листа. Страницы должны быть пронумерованы внизу страницы справа. Нумерация страниц – сквозная для всего отчёта, на первом (титульном) листе номер не ставится.

Контрольная работа должна быть правильно оформлена, написана грамотно и аккуратно.

10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Информационно-коммуникационные технологии (ИКТ) — преподаватель использует для получения информации при подготовке к занятиям, создания презентационного сопровождения лекций, создания тематических веб-сайтов, интерактивного общения, участия в онлайн-конференциях, работы в электронной информационной среде, используется следующее программное обеспечение:

- Microsoft Imagine Premium (OC Windows 7 Professional);
- Microsoft Office 2007 Russian Academic OPEN No Level;
- Kaspersky Endpoint Security для бизнеса Расширенный Russian Edition. 1000-1499 Node 1 year Educational Renewal License;
- КОМПАС-3D V13;
- Adobe Reader.

11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Вид занятия	Наименование аудитории	Перечень основного оборудования	№ ЛР
1	2	3	4
Лк	Лекционная аудитория (мультимедийный класс)	Учебная мебель, проектор мультимедийный «CASIO» XJ-UT310WN с настенным креплением CASIO YM-88 Интерактивная доска Promethean 88 ActivBoard Touch Dry Erase 6 касаний с настенным креплением и программным обеспечением Promethean ActivInspire Монитор 17"LG L1753-SF (silver-blek)	

		Системный блок (AMD 690G,mANX,HDD Seagate 250Gb,DIMM DDR//2*512Mb,DVDRV,FDD	
ЛР	Лаборатория общей гидравлики	Учебная мебель, интерактивная доска SMARTBoard 6801 со встроенным проектором Unifi 35 (диаг.77"/195,6 см); Телевизор LCD 42" Phlips 42 PFL3605; Настольная лаборатория гидравлики; Лабораторный стенд «Работа насосов различных типов»;	ЛР 1-3
ЛР	Лаборатория гидро- пневмопривода	Учебная мебель, учебно-лабораторный стенд для изучения гидравлических приводов «Гидравлические приводы с ПЛК»; Гидравлические и пневматические системы и средства автоматики; Настольная лаборатория гидравлики;	ЛР 4- 17
KP	Лаборатория автоматизации систем проектирования	Учебная мебель, системный блок (AMD 690G,mANX,HDD Seagate 250Gb,DIMM DDR//2*512Mb,DVDRV,FDD; Системный блок Cel D-315; Системный блок CPU 4000.2*512MB; Монитор Терминал ТFТ 19 LG L1953S-SF; Системный блок AMD Athlon 64X2; Системный блок Celeron 2,66; Сканер HP 3770; Монитор 15 LG; Системный блок iCel 433; Принтер HP LJ P2015	-
СР	Читальный зал №1	Учебная мебель, оборудование 10-ПК і5- 2500/H67/4Gb (монитор TFT19 Samsung);принтер HP LaserJet P2055D	-

Приложение 1

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

1. Описание фонда оценочных средств (паспорт)

№ компе- тенции	Элемент компетенции	Раздел	ФОС
ОПК-2	Способность применять современные	1. Введение. Предмет гидравлики и краткая история ее развития.	Экзаменационные вопросы 1–4
	методы исследования, оценивать и	1. Основы гидростатики. Основы гидродинамики.	Экзаменационные вопросы 5– 14
	представлять результаты выполненной	2. Гидравлические сопротивления. Истечение жидкости из отверстий, насадков и из-под затворов.	Экзаменационные вопросы 15-26
	работы	3. Гидравлический расчет простых трубопроводов.	Экзаменационные вопросы 27-32
ПК-4	Способность в составе коллектива	4. Гидравлические машины.	Экзаменационные вопросы 33-37
	исполнителей участвовать в разработке конструкторскотехнической документации новых или модернизируемых образцов наземных транспортнотехнологических машин и комплексов	5. Общая характеристика гидропривода. Рабочие жидкости для гидросистем. Гидравлические линии.	Экзаменационные вопросы 38-45
		6. Насосы и гидромоторы. Гидроцилиндры. Гидрораспределители	Экзаменационные вопросы 46-57
		7. Регулирующая и направляющая гидроаппаратура. Вспомогательные устройства гидросистем	Экзаменационные вопросы 58-70
		8. Гидравлические следящие приводы (гидроусилители).	Экзаменационные вопросы 71 - 75
		9. Системы разгрузки насосов и регулирования гидродвигателей.	Экзаменационные вопросы 76 - 80
		10. Схемы типовых гидросистем.	Экзаменационные вопросы 81 - 86
		11. Пневматический привод.	Экзаменационные вопросы 87 - 89

2. Экзаменационные вопросы

N₂	2. Экзаменационные вопр Компетенции		ЭКЗАМЕНАЦИОННЫЕ	№ и наименование	
п/п	Код	Определение	вопросы	раздела	
1	2	3	4	5	
1.	ОПК-2	Способность применять современные методы исследования, оценивать и представлять результаты	 Краткая история развития гидравлики. Жидкость и силы действующие на нее. Механические характеристики. Основные свойства жидкостей 	1. Введение. Предмет гидравлики и краткая история ее развития.	
2.	ПК-4	Способность в составе коллектива исполнителей участвовать в разработке конструкторско-	 Б. Гидростатическое давление. Основное уравнение гидростатики. Давление жидкости на плоскую наклонную стенку. Давление жидкости на цилиндрическую поверхность. Закон Архимеда и его приложение. Поверхности равного давления. Основные понятия о движении жидкости. Уравнение Бернулли для идеальной жидкости. Уравнение Бернулли для реальной жидкости. Измерение скорости потока и расхода жидкости. 	2. Основы гидростатики. Основы гидродинамики.	
		технической документации новых или модернизируемых образцов наземных транспортнотехнологических машин и комплексов	 15. Режимы движения жидкости. 16. Кавитация. 17. Потери напора при ламинарном течении жидкости. 18. Потери напора при турбулентном течении жидкости. 19. Местные гидравлические сопротивления 20. Истечение через малые отверстия в тонкой стенке при постоянном напоре. 21. Истечение при несовершенном сжатии. 22. Истечение под уровень. 23. Истечение через насадки при постоянном напоре. 24. Истечения через отверстия и насадки при переменном напоре (опорожнение сосудов). 25. Истечение из-под затвора в горизонтальном лотке. 	3. Гидравлическ ие сопротивления. Истечение жидкости из отверстий, насадков и из-под затворов.	

26. Давление струи жидкости на	
ограждающие поверхности.	
ограждающие поверхности.	
27. Простой трубопровод	4. Гидравлическ
постоянного сечения.	, T
28. Соединения простых	ий расчет простых
±	трубопроводов.
трубопроводов.	
29. Сложные трубопроводы.	
30. Трубопроводы с насосной	
подачей жидкостей.	
31. Гидравлический удар.	
32. Изменение пропускной	
способности трубопроводов в	
процессе их эксплуатации.	
33. Лопастные насосы.	5. Гидравлические
34.Поршневые насосы.	машины
35.Индикаторная диаграмма	
поршневых насосов.	
36. Баланс энергии в насосах.	
37.Обозначение элементов гидро- и	
пневмосистем.	
38. Структурная схема гидропривода.	6 06
39. Классификация и принцип работы	6. Общая
гидроприводов.	характеристика
40. Преимущества и недостатки	гидропривода.
гидропривода	Рабочие жидкости для
41. Характеристика рабочих	гидросистем.
жидкостей.	Гидравлические
	линии
42. Выбор и эксплуатация рабочих	
жидкостей.	
43. Гидравлические линии.	
44. Соединения.	
45. Расчет гидролиний.	
ACE	
46. Гидравлические машины	7. Насосы и
шестеренного типа.	гидромоторы.
47. Пластинчатые насосы и	Гидроцилиндры.
гидромоторы.	Гидрораспределители
48. Радиально-поршневые насосы и	
гидромоторы.	
49. Аксиально-поршневые насосы и	
гидромоторы.	
50. Механизмы с гибкими	
разделителями.	
51. Классификация гидроцилиндров.	
52. Гидроцилиндры прямолинейного	
действия.	
53. Расчет гидроцилиндров.	
54. Поворотные гидроцилиндры.	
55. Золотниковые	
гидрораспределители.	

	56. Крановые гидрораспределители.57. Клапанные гидрораспределители.	
	 58. Напорные гидроклапаны. 59. Редукционный клапан. 60. Обратные гидроклапаны. 61. Ограничители расхода. 62. Делители (сумматоры) потока. 63. Дроссели и регуляторы расхода 64. Гидробаки и теплообменники. 65. Фильтры. 66. Уплотнительные устройства. 67. Гидравлические аккумуляторы. 68. Гидрозамки. 69. Гидравлические реле давления и времени. 70. Средства измерения. 	8. Регулирующая и направляющая гидроаппаратура. Вспомогательные устройства гидросистем
	 71.Классификация гидроусилителей. 72.Гидроусилитель золотникового типа. 73.Гидроусилитель с соплом и заслонкой. 74.Гидроусилитель со струйной трубкой. 75.Двухкаскадные усилители. 	9. Гидравлические следящие приводы (гидроусилители).
	 76. Способы разгрузки насосов от давления. 77. Дроссельное регулирование. 78. Объемное регулирование. 79. Комбинированное регулирование. 80. Сравнение способов регулирования. 	10. Системы разгрузки насосов и регулирования гидродвигателей.
	 81.Гидросистемы с регулируемым насосом и дросселем. 82.Гидросистемы с двухступенчатым усилением. 83.Гидросистемы непрерывного (колебательного) движения. 84.Электрогидравлические системы с регулируемым насосом. 85.Гидросистемы с двумя спаренными насосами. 86.Питание одним насосом двух и несколько гидродвигателей. 	11. Схемы типовых гидросистем.
	87.Особенности пневматического привода, достоинства и недостатки.88.Течение воздуха.89.Исполнительные пневматические устройства	12. Пневматичес-кий привод.

3. Описание показателей и критериев оценивания компетенций

Показатели	Оценка	Критерии
Знать:		Оценка «отлично» выставляется
(ОПК-2)		обучающемуся, если он демонстрирует
методики исследования		полное освоение теоретического
конструкций наземных		содержания дисциплины; представляет
транспортно-технологических	0.77.77.77.0	практические навыки работы на
систем;	отлично	учебных стендах учетом основных
(ПК-4)		требований безопасности; все учебные
основы конструкторско-		задания выполнены правильно, качество
технической документации новых		их выполнения оценено числом баллов,
или модернизируемых образцов		близким к максимальному.
наземных транспортно-		Оценка «хорошо» выставляется
технологических машин и		обучающемуся, если в усвоении
комплексов;	хорошо	учебного материала им допущены
Уметь:		небольшие пробелы, не исказившие
(ОПК-2)		содержание ответа; допущены один –
проводить исследования		два недочета в формировании навыков
конструкций наземных		решений практических задач.
транспортно-технологических		Оценка «удовлетворительно»
систем;	удовлетво-	выставляется обучающемуся, если в его
(ПК-4)	рительно	ответе содержание теоретического
разрабатывать основы		материала раскрыто неполно, но
конструкторско-технической		показано общее понимание вопроса.
документации новых или		
модернизируемых образцов	неудовлет-	обучающийся демонстрирует полное
наземных транспортно-	ворительно	отсутствие знаний основных понятий
технологических машин и		гидравлики и гидропневмопривода
комплексов;		СДМ, навыков решения практических
Владеть: (ОПК-2)		задач на учебных стендах.
методиками исследования		
конструкций наземных		
транспортно-технологических		
систем;		
(ПK-4)		
навыками разработки		
конструкторско-технической		
документации новых или		
модернизируемых образцов		
наземных транспортно-		
технологических машин и		
комплексов.		

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности

Изучение дисциплины «Гидравлика и гидропневмопривод» охватывает круг вопросов, относящихся к научно-исследовательскому и проектно-конструкторскому видам профессиональной деятельности выпускника в соответствии с компетенциями и видами деятельности, указанными в учебном плане.

При подготовке к экзамену рекомендуется особое внимание уделить следующим вопросам:

- 1. Введение. Предмет гидравлики и краткая история ее развития.
- 2. Основы гидростатики. Основы гидродинамики.
- 3. Гидравлические сопротивления. Истечение жидкости из отверстий, насадков и из-под затворов.
 - 4. Гидравлический расчет простых трубопроводов.
 - 5. Гидравлические машины.
- 6. Общая характеристика гидропривода. Рабочие жидкости для гидросистем. Гидравлические линии.
 - 7. Насосы и гидромоторы. Гидроцилиндры. Гидрораспределители
- 8. Регулирующая и направляющая гидроаппаратура. Вспомогательные устройства гидросистем
 - 9. Гидравлические следящие приводы (гидроусилители).
 - 10. Системы разгрузки насосов и регулирования гидродвигателей.
 - 11. Схемы типовых гидросистем.
 - 12. Пневматический привод.

Закрепление всех вопросов, рекомендуемых для лабораторных работ, а также при подготовке к экзамену, требует основательной самостоятельной подготовки. Учитывая значимость самостоятельной работы, литература, вопросы для самопроверки - в разделах «Лабораторные работы» и «Фонд оценочных средств».

Работа с литературой является обязательной. При этом приветствуется привлечение дополнительных источников из Интернета. В случае возникновения определенных вопросов, обучающийся может обратиться к преподавателю за консультацией как на лабораторных работах, так и во время индивидуальных консультаций.

Предусмотрено проведение аудиторных занятий в виде лекций, лабораторных работ в сочетании с внеаудиторной работой.

АННОТАЦИЯ

рабочей программы дисциплины Гидравлика и гидропневмопривод

1. Цели и задачи дисциплины

Целью изучения дисциплины является: осуществление информационного поиска по основам гидравлики и гидропневмопривода СДМ, участие в составе коллектива исполнителей при производстве и испытании гидроагрегатов СДМ.

Задачей изучения дисциплины является: получение общих сведений об основных тенденциях и направлениях в развитии оборудования, используемых на предприятиях строительного комплекса; получение общих сведений об основных научно-технических проблемах и перспективах развития науки и техники в области строительной индустрии.

2. Структура дисциплины

2.1 Распределение трудоемкости по отдельным видам учебных занятий, включая самостоятельную работу: ЛР – 35 час., Лк-35 час., СР – 155 час. Общая трудоемкость дисциплины составляет 252 часов, 7 зачетных единиц.

2.2 Основные разделы дисциплины:

- 1. Введение. Предмет гидравлики и краткая история ее развития.
- 2. Основы гидростатики. Основы гидродинамики.
- 3. Гидравлические сопротивления. Истечение жидкости из отверстий, насадков и из-под затворов.
- 4. Гидравлический расчет простых трубопроводов.
- 5. Гидравлические машины.
- 6. Общая характеристика гидропривода. Рабочие жидкости для гидросистем. Гидравлические линии.
- 7. Насосы и гидромоторы. Гидроцилиндры. Гидрораспределители
- 8. Регулирующая и направляющая гидроаппаратура. Вспомогательные устройства гидросистем
- 9. Гидравлические следящие приводы (гидроусилители).
- 10. Системы разгрузки насосов и регулирования гидродвигателей.
- 11. Схемы типовых гидросистем.
- 12. Пневматический привод.

3. Планируемые результаты обучения (перечень компетенций)

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ОПК-2 способность применять современные методы исследования, оценивать и представлять результаты выполненной работы;
 - ПК-4 способность в составе коллектива исполнителей участвовать в разработке конструкторско-технической документации новых или модернизируемых образцов наземных транспортно-технологических машин и комплексов.

4. Вид промежуточной аттестации: экзамен.

Протокол о дополнениях и изменениях в рабочей программе на 20___-20___ учебный год

1. В рабочую программу по дисциплине вносятся следующие	дополнения:	
2. В рабочую программу по дисциплине вносятся следующие	изменения:	
Протокол заседания кафедры СДМ № от «»	20 г.,	
Заведующий кафедрой	(Φ.	И.О.)

Программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 23.03.02 Наземные транспортно-технологические комплексы от «06» марта 2015г. №162

<u>для набора 2014 года:</u> и учебным планом ФГБОУ ВО «БрГУ» для заочной формы обучения от «03» июля 2018г. № 413;

Программу составил:

Федоров Вячеслав Сергеевич, к.т.н., доцент

Рабочая программа рассмотрена и утверждена на заседании кафедры СДМ от «24» декабря 2018г., протокол №6

И.о. заведующего кафедрой СДМ

К.Н. Фигура

СОГЛАСОВАНО:

И.о. заведующего кафедрой СДМ

К.Н. Фигура

Директор библиотеки

Т.Ф. Сотник

Рабочая программа одобрена методической комиссией МФ от «28» декабря 2018 г., протокол №5

Председатель методической комиссии МФ

Г.Н. Плеханов

СОГЛАСОВАНО:

Начальник учебно-методического управления Регистрационный №

Г.П. Нежевец