МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БРАТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра подъемно-транспортных, строительных, дорожных машин и оборудования

УТВ	ВЕРЖДА	λЮ:
Прој	ректор п	ю учебной работе
		Е. И. Луковникова
«	»	201г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ НАДЕЖНОСТЬ МЕХАНИЧЕСКИХ СИСТЕМ

Б1.Б.19.13

СПЕЦИАЛЬНОСТЬ

23.05.01 Наземные транспортно-технологические средства

СПЕЦИАЛИЗАЦИЯ

Подъемно-транспортные, строительные, дорожные средства и оборудование
Программа специалитета

Квалификация выпускника: инженер

	СОДЕРЖАНИЕ ПРОГРАММЫ	Стр.
1.	ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	. 3
2.	МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	. 5
3.	РАСПРЕДЕЛЕНИЕ ОБЪЕМА ДИСЦИПЛИНЫ	5
	трудоемкости	5
4.	СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	. 6
	4.1 Распределение разделов дисциплины по видам учебных занятий 4.2 Содержание дисциплины, структурированное по разделам и темам 4.3 Лабораторные работы 4.4 Практические занятия	7
	4.5. Контрольные мероприятия: курсовой проект (курсовая работа), контрольная работа, РГР, реферат.	. 8
 6. 7. 	МАТРИЦА СООТНЕСЕНИЯ РАЗДЕЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ К ФОРМИРУЕМЫМ В НИХ КОМПЕТЕНЦИЯМ И ОЦЕНКЕ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ	E 10
8.	НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО – ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ» НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	
	МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ	11 12
10.	ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	20
11.	ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	21
П	риложение 1. Фонд оценочных средств для проведения промежуточной	
	аттестации обучающихся по дисциплине	
	риложение 2. Аннотация рабочей программы дисциплины	

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Вид деятельности выпускника

Дисциплина охватывает круг вопросов, относящихся к производственнотехнологическому виду профессиональной деятельности выпускника в соответствии с компетенциями и видами деятельности, указанными в учебном плане.

Цель дисциплины

- осуществление информационного поиска по надежности механических систем подъемно-транспортных, строительных, дорожных средств и оборудования;
- участие в составе коллектива исполнителей в разработке технических условий на проектирование и техническое описание подъемно-транспортных, строительных, дорожных средств и оборудования.

Задачи дисциплины

- дать общие сведения о показателях надежности механических систем;
- дать общие сведения об испытаниях на надежность;
- дать общие сведения об общих направлениях повышения надежности.

	Содержание компетенций	Перечень планируемых результатов обучения по дисциплине
1	2	3
OK-1	способность к абстрактному мышлению, анализу, синтезу	знать: -основные понятия в сфере наземных транспортно-технологических средств; уметь: -обобщать, анализировать, систематизировать информацию в области наземных транспортно-технологических средств; владеть: -способностями к абстрактному мышлению, анализу, синтезу в сфере наземных транспортно-технологических средств.
ПК-11	-	-методику контроля параметров технологических процессов и эксплуатации средств механизации и автоматизации подъемно-транспортных,

		автоматизации подъемно-транспортных, строительных и дорожных работ и их технологического оборудования.
	способность проводить стандартные испытания наземных транспортно-технологических средств и их технологического оборудования	-методики стандартных испытаний наземных транспортно-технологических
ПСК-2.8	способность осуществлять контроль за параметрами технологических процессов и эксплуатации средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ и их технологического оборудования	знать: -методику контроля параметров технологических процессов и эксплуатации средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ и их технологического оборудования; уметь: -проводить контроль за параметрами технологических процессов и эксплуатации средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ и их технологического оборудования; владеть: -методиками контроля за параметрами технологических процессов и эксплуатации средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ и их технологического оборудования.
ПСК-2.9	способность проводить стандартные испытания средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ	знать: -методики стандартных испытаний строительных и дорожных машин и оборудования; уметь: -проводить стандартные испытания средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ; владеть: -навыками проведения стандартных испытаний средств механизации и автоматизации и автоматизации подъемно-транспортных, строительных и дорожных работ.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина Б1.Б.19.13 Надежность механических систем относится к базовой части.

Дисциплина Надежность механических систем базируется на знаниях, полученных при изучении дисциплин: Гидравлика и гидропневмопривод, Проектирование подъемнотранспортных, строительных, дорожных средств и оборудования, Технология производства подъемно-транспортных, строительных, дорожных средств и оборудования.

Основываясь на изучении перечисленных дисциплин Надежность механических систем представляет основу для изучения дисциплин: Динамика и прочность, Повышение эффективности строительно-дорожных средств и оборудования для Северных условий эксплуатации.

Такое системное междисциплинарное изучение направлено на достижение требуемого ФГОС уровня подготовки по квалификации инженер.

3. РАСПРЕДЕЛЕНИЕ ОБЪЕМА ДИСЦИПЛИНЫ

3.1. Распределение объема дисциплины по формам обучения

			Трудоемкость дисциплины в часах					Курсовая		
Форма обучения	Курс	Семестр	Всего часов (с экз.)	Аудиторных часов	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	пурсовал работа (проект), контроль ная работа, реферат, РГР	Вид промежу точной аттеста ции
1	2	3	4	5	6	7	8	9	10	11
Очная	-	1	-	-	-	-	-	-	-	-
Заочная	3	1	72	8	4	4	-	60	-	зачет
Заочная	-	-	-	-	-	-	-	-	-	-
(ускоренное										
обучение)										
Очно-заочная	-	-	1	_	-	-	-	_	-	-

3.2. Распределение объема дисциплины по видам учебных занятий и трудоемкости

Вид учебных занятий	Трудо- емкость	в т.ч. в интерактивной, активной, иннова-	Распределение по курсам, час
	(час.)	циионной формах, (час.)	3
1	2	3	4
I. Контактная работа обучающихся с преподавателем (всего)	8	4	8
Лекции (Лк)	4	2	4
Лабораторные работы (ЛР)	4	2	4
Групповые (индивидуальные) консультации	+	-	+
II. Самостоятельная работа обучающихся (CP)	60	-	60
Подготовка к лабораторным работам	40	-	40
Подготовка к зачету	20	-	20

III. Промежуточная аттестация зачет	+	-	+
Общая трудоемкость дисциплины час.	72	-	72
зач. ед.	2	-	2

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Распределение разделов дисциплины по видам учебных занятий

- для заочной формы обучения:

<i>№ paз-</i>	Наименование			амостоятельную мкость; (час.)	
дела и	раздела и	Трудоемкость,	учебны	Самостоятельная	
темы	тема дисциплины	(час.)	лекции	лабораторные работы	работа обучающихся
1	2	3	4		6
1.	Основные положения и зависимости надежности Зависимости между случайными величинами	18	1	2	15
2.	Математические основы теории надежности Физические основы теории надежности	18	1	2	15
3.	Надежность систем Испытания на надежность	16	1	-	15
4.	Надежность отдельных классов строительных машин	16	1	-	15
	ИТОГО	68	4	4	60

4.2. Содержание дисциплины, структурированное по разделам и темам.

№ раздела и темы	Наименование раздела и темы дисциплины	Содержание лекционных занятий	Вид занятия в интерактивной, активной, инновационной формах, (час.)
1.	Основные положения	Понятия надёжности. Показатели	Лекция-диспут
	и зависимости надежности Зависимости между случайными величинами	надежности. Случайные величины и их характеристики. Общие зависимости. Надежность в период нормальной эксплуатации. Надежность в период постепенных отказов. Совместное действие внезапных и постепенных отказов.	(1 час.)

		Особенности надежности восстанавливаемых изделий.	
2.	Математические основы теории надежности Физические основы теории надежности	Определение закона распределения функций по законам распределения аргументов в применении к задачам надежности. Применение корреляционного анализа к зависимостям надежности. Метод статического моделирования. Случайные функции. Общие зависимости. Применение статистических методов подобия к определению усталостных характеристик деталей машин. Оценка надежности при механическом изнашивании. Оценка надежности по критерию теплостойкости.	Разбор конкретных ситуаций (1 час.)
3.	Надежность систем Испытания на надежность	Общие сведения. Надежность последовательной системы при нормальном распределении нагрузки по системам. Оценка надежности системы типа цепи. Надежность систем с резервированием. Специфика оценки надежности машин по результатам испытаний. Определительные испытания. Форсирование режима испытаний. Сокращение числа образцов. Контрольные испытания.	-
4.	Надежность отдельных классов строительных машин	Общие направления повышения надежности машин. Автомобили. Строительные машины. Роботы.	-

4.3. Лабораторные работы.

№ n/n	Номер раздела дисциплины	Наименование лабораторных работ	Объем (час.)	Вид занятия в интерактивной, активной, инновационной формах, (час.)
1	1.	Определение числа объектов наблюдения	2	исследовательская деятельность (1 час.)
2	2.	Проверка однородности результатов наблюдений	0,5	-
3	2.	Первичная обработка экспериментального материала	0,5	исследовательская деятельность (1 час.)

		Вычисление	статистических	1	-
4	2.	характеристик для функции распределения	эмпирической		
			ИТОГО	4	2

4.4. Практические занятия.

Учебным планом не предусмотрено.

4.5. Контрольные мероприятия: курсовой проект (курсовая работа), контрольная работа, РГР, реферат

Учебным планом не предусмотрено.

5. МАТРИЦА СООТНЕСЕНИЯ РАЗДЕЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ К ФОРМИРУЕМЫМ В НИХ КОМПЕТЕНЦИЯМ И ОЦЕНКЕ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Компетенции			Ко	мпетен	ции				Вид	
№, наименование	Кол-во	ОК	I	IK .	ПС	CK .	Σ	t_{cp} , ча c	учебных	Оценка
разделов дисциплины	часов	1	11	12	2.8	2.9	комп.	-17	занятий	результатов
1	2	3	4	5	6	7	8	9	10	11
1. Основные положения и зависимости надежности	18	+	+	+	+	+	5	3,6	Лк, ЛР, СР	зачет
Зависимости между случайными величинами										
2. Математические основы теории надежности	18	+	+	+	+	+	5	3,6	Лк, ЛР, СР	зачет
Физические основы теории надежности										
3. Надежность систем Испытания на надежность	16	+	+	+	+	+	5	3,2	Лк, СР	зачет
4. Надежность отдельных классов строительных машин	16	+	+	+	+	+	5	3,2	Лк, СР	зачет
всего часов	68	13,6	13,6	13,6	13,6	13,6	5	13,6		

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

- 1. Математические основы теории надежности: методические указания по изучению дисциплины / Д.Ю. Кобзов. Братск: ГОУВПО «БрГУ». 2006. 35с.
- 2. Строительные машины: методические указания по самостоятельному изучению дисциплины / Д.Ю. Кобзов. Братск: ГОУВПО «БрГТУ». 2003. 13с.

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ,

НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

№	БХОДИМОИ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ Наименование издания	Вид зан я- ти я	Количе ство экземпл яров в библио теке, шт.	Обеспечен- ность, (экз./ чел.)
	Основная литература			
1.	Белецкий, Б.Ф. Строительные машины и оборудование. [Электронный ресурс] / Б.Ф. Белецкий, И.Г. Булгакова. — Электрон. дан. — СПб. : Лань, 2012. — 608 с. — Режим доступа: http://e.lanbook.com/book/2781	Лк ЛР СР	ЭР	1
2.	Глаголев, С.Н. Строительные машины, механизмы и оборудование: учебное пособие / С.Н. Глаголев. – М.: Директ-Медиа, 2014. – 396 с. – ISBN 978-5-4458-5282-7; То же [Электронный ресурс]. – URL:http://biblioclub.ru/index.php?page=book&id=235423	Лк ЛР СР	ЭР	1
3.	Леонова, О.В. Надежность механических систем: учебное пособие / О.В. Леонова. – Москва: Альтаир-МГАВТ, 2014. – 179 с., ил., табл., схем. – Библиогр. в кн.; То же [Электронный ресурс]. – URL:http://biblioclub.ru/index.php?page=book&id=429858	Лк ЛР СР	ЭР	1
4.	Рогожкин, В.М. Эксплуатация машин в строительстве.В.З ч. Ч.1-3: учебник для студентов вузов, обучающихся по специальности "Подъемно-транспортные, строительные, дорожные машины и оборудование" направления подготовки "Транспортные машины и транспортно-технологические комплексы" / В. М. Рогожкин Старый Оскол: ТНТ, 2016 ISBN 978-5-94178-117-1. Ч. 1: Основы эффективной эксплуатации машин 2016 288 с.		9	1
5.	Компьютерная графика в САПР [Электронный ресурс]: учеб. пособие/ А.В. Приемышев [и др.]. — Электрон. дан. — СПб.: Лань, 2017. — 196 с. — Режим доступа: http://e.lanbook.com/book/90060	Лк ЛР СР	ЭР	1
6.	Крестин, Е.А. Задачник по гидравлике с примерами расчетов [Электронный ресурс]: учеб. пособие/ Е.А. Крестин, И.Е. Крестин. — Электрон. дан. — Санкт-Петербург.: Лань, 2018. — 320 с. — Режим доступа http://e.lanbook.com/book/98240	Лк ЛР СР	ЭР	1
	Дополнительная литература			
7.	Леонова, О.В. Надёжность механических систем: методические рекомендации / О.В. Леонова; Министерство транспорта Российской Федерации, Московская государственная академия водного транспорта Москва: Альтаир-МГАВТ, 2015 62 с.: ил., табл., схем Библиогр. в кн; То же [Электронный ресурс] URL: http://biblioclub.ru/index.php?page=book&id=429857	Лк ЛР СР	24	1

8.	Волков, Д. П. Строительные машины : учебное пособие / Д. П.	Лк	24	1
	Волков, В. Я. Крикун 2-е изд., перераб. и доп М.: АСВ, 2002.	ЛР		
	- 376 c.	CP		
9.	Эксплуатация подъемно-	Лк	30	1
	гранспортных, строительных и дорожных машин : учебник / А.	ЛР		
	В. Рубайлов, Ф. Ю. Керимов, В. Я. Дворковой и др.; Под ред. Е.	CP		
	С. Локшина Москва : Академия, 2007 512 с.			
10.	Сергеев, В.П. Строительные машины и оборудование: учебное	Лк	77	1
	пособие / В.П. Сергеев М.; Высшая школа, 1987 375с.	ЛР		
		CP		
11.	Строительные машины. Справочник. Под общей редакцией В.А.	Лк	12	1
	Баумана и Ф.А. Лапира. М.; М.; Машиностроение. Т. І (для 1	CP		
	части курса). 1976480с., Т II (для II части курса). 1977 496с.			

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО - ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ» НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1.Электронный каталог библиотеки БрГУ http://irbis.brstu.ru/CGI/irbis64r_15/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=BOOK&P21 DBN=BOOK&S21CNR=&Z21ID=.
 - 2. Электронная библиотека БрГУ http://ecat.brstu.ru/catalog.
- 3. Электронно-библиотечная система «Университетская библиотека online» http://biblioclub.ru .
 - 4. Электронно-библиотечная система «Издательство «Лань» http://e.lanbook.com .
- 5. Информационная система "Единое окно доступа к образовательным ресурсам" http://window.edu.ru .
 - 6. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru.
- 7. Университетская информационная система РОССИЯ (УИС РОССИЯ) https://uisrussia.msu.ru/ .
 - 8. Национальная электронная библиотека НЭБ http://xn--90ax2c.xn--p1ai/how-to-search /.

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Работа на лекциях: ведение конспекта лекционного материала для успешного использования его при подготовке к зачету, закрепления и расширения теоретических знаний. После проработки лекционного материала обучающийся должен четко владеть следующими аспектами по каждой лекции:

- знать тему;
- четко представлять план лекции;
- уметь выделять основное, главное;
- усвоить значение примеров и иллюстраций.

Самостоятельная работа выполняет функцию закрепления, повторения изученного материала. Выполнение самостоятельной работы способствует углублению знаний и более успешному формированию умений и навыков, связанных с изучением конкретных тем.

Характер самостоятельной работы: решение задач, которые выполняются по заданию и при методическом руководстве преподавателя, а также без его непосредственного участия. Правильное выполнение заданий по самостоятельной работе развивает способности самостоятельно работать с информацией, используя учебную и научную литературу. Самостоятельная работа дисциплинирует обучающихся, развивает произвольное внимание и совершенствует навыки целесообразного восприятия.

9.1. Методические указания для обучающихся по выполнению лабораторных работ

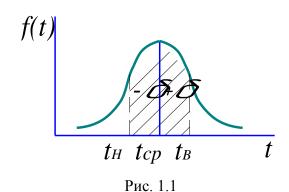
Лабораторные работы выполняются группами из 2-3 человек.

Отчеты по лабораторным работам должны содержать:

- 1. Цель работы.
- 2. Задание.
- 3. Поэтапное выполнение задания.
- 4. Заключение.

Лабораторная работа №1.

Тема: Определение числа объектов наблюдения.


Цель работы: Изучение показателей и определение числа объектов наблюдения.

Задание: Используя исходные данные произвести расчет числа объектов наблюдения.

Случайный характер показателей надёжности обуславливает приближённую оценку значений и необходимость достаточного объёма информации для их определения. Большое число объектов наблюдений усложняет и удорожает исследование надёжности, поэтому надо стремиться сократить число наблюдаемых объектов.

Степень приближения результатов наблюдений за группой машин к истинным значениям определяют объёмом выборки и оценивают относительной ошибкой и доверительной вероятностью (достоверностью) рассматриваемых величин.

Относительная ошибка δ характеризует степень точности определения среднего значения (рис.1.1).

 $\delta = \frac{t_{e} - t_{cp}}{t_{cp}} = \frac{\left|t_{H} - t_{cp}\right|}{t_{cp}},$

где $t_{\scriptscriptstyle g}$ - верхняя односторонняя доверительная граница,

 $t_{_{H}}$ - нижняя односторонняя доверительная граница,

 $t_{\it cp}\,$ - среднее значение рассматриваемой величины (наработки).

Устанавливая границы значений рассматриваемого параметра $(t_g - t_n)$, нельзя исключать возможность получения результата, выходящего за пределы этого интервала.

Поэтому наряду с оценкой точности необходимо указать вероятность получения результата в пределах установленного интервала, т.е. доверительную вероятность. Различают односторонние и двусторонние доверительные вероятности:

для односторонней вероятности:

$$\beta_{\scriptscriptstyle g} = P(t_{\scriptscriptstyle cp} \leq t_{\scriptscriptstyle g}), \beta_{\scriptscriptstyle H} = P(t_{\scriptscriptstyle cp} \geq t_{\scriptscriptstyle H});$$

для двусторонней вероятности:

$$\beta = P(t_{\scriptscriptstyle H} \le t_{\scriptscriptstyle CP} \le t_{\scriptscriptstyle g}),$$

Существует связь между δ , β и числом N наблюдаемых объектов. Так, при распределении отказов по нормальному закону:

$$\frac{t_{\beta}}{\sqrt{N}} = \frac{\delta}{V},$$

где V - коэффициент вариации,

$$V = \frac{\sigma_t}{t_{cp}},$$

здесь $\sigma_{\scriptscriptstyle t}$ - среднее квадратическое отклонение.

Порядок наблюдения числа *N* объектов следующий:

- задают относительную ошибку δ среднего значения t_{cp} с доверительной вероятностью β ;
- задают ожидаемое значение коэффициента вариации V;
- определяют отношение $\frac{\delta}{V}$;
- по отношению $\frac{\delta}{V}$ и выбранной доверительной вероятности β в табл.1 приложения находят соответствующее число N.

Для решения практических задач следует использовать односторонние доверительные вероятности, равные 0,8; 0,9; 0,95; 0,99. При этом значения $\beta = 0,8$ -0,9 выбираются для машин, неожиданный выход из строя которых не влечёт за собой тяжёлых последствий. Для высокопроизводительных сложных машин, таких как роторные экскаваторы, скреперы с ёмкостью ковша более 25 м³, значения β принимают равными 0,9-0,99.

При неизвестном законе распределения случайной величины минимальное число объектов наблюдений определяется по формуле:

$$N = \frac{\ln(1-\beta)}{\ln P(t)},$$

где P(t) - вероятность безотказной работы машины или узла, установленная в. нормативной документации, в течение времени t.

Для определения числа объектов наблюдения можно также использовать табличные данные

Таблица 1.1.

_ , ,	Значение N при β					
P(t)	0,80	0,90	0,95	0,99		
0,8	8	10	13	20		
0,9	15	21	30	44		
0,95	30	40	60	85		
0,98	75	120	140	230		
0,99	150	220	280	430		

Задания для самостоятельной работы:

- 1. Ознакомиться с текстом лекций.
- 2. Ответить на контрольные вопросы для самопроверки.

Основная литература:

[1-6] из раздела 7.

Дополнительная литература:

[7-10] из раздела 7.

Контрольные вопросы для самопроверки

- 1. Случайные величины и их характеристики.
- 2. Общие зависимости.

Лабораторная работа №2.

<u>Тема</u>: Проверка однородности результатов наблюдений

Цель работы: Изучение критериев оценки надежности механических систем.

<u>Задание:</u> По заданным характеристикам произвести критериев оценки надежности механических систем.

Первым этапом обработки информации о надёжности является проверка однородности результатов.

В общем случае задача сводится к сравнению результатов наблюдений двух серий:

$$x_1, x_2, ..., x_n, u..., x_1, x_2, ..., x_n$$

Каждая из серий даёт непрерывное распределение случайной величины. Требуется выяснить, можно ли считать:

$$F_1(x') = F_2(x');$$

для этого используют различные методы: критерий Андерсона, критерий χ^2 и др.

Критерий χ²

Рассмотрим один из методов - критерий χ^2 . Сущность этого метода заключается в проверке степени равномерности распределения числа наблюдений двух последовательностей по интервалам наработки. Для использования критерия обе последовательности распределяются по интервалам на К групп следующим образом:

$$m'_1+m'_2+...+m'_K=m,$$

 $n'_1+n'_2+...+n'_K=n.$

Значение критерия подсчитывают по формуле:

$$\chi^2 = m \cdot n \cdot \sum_{i=1}^k \frac{1}{m'_i + n'_i} \left(\frac{m'_i}{m} - \frac{n'_i}{n} \right)^2,$$

Полученные значения сравниваются с теоретическими для заданного уровня значимости и числа степеней свободы r=K-1 (табл.3 приложения). Если расчётное значение $\chi^2 < \chi^2_{\alpha(k-1)}$, то гипотезу об однородности результатов наблюдений принимают.

Для расчётов составляется таблица

Таблица 2.1

Интервал	Граница интервала	m_i	n_i	$\frac{1}{m'_i + n'_i}$	$\frac{m'_i}{m}$	$\frac{n'_i}{n}$	$\frac{m'_i}{m} - \frac{n'_i}{n}$	$\left(\frac{m'_i}{m} - \frac{n'_i}{n}\right)^2$	$\frac{1}{m'_i + n'_i} \times \left(\frac{m'_i}{m} - \frac{n'_i}{n}\right)^2$
1	2	3	4	5	6	7	8	9	10
1 2 K	Итого:	Σ=	Σ=	Σ=	Σ=	Σ=	Σ=	Σ=	Σ=

Критерий Андерсона

Одним из наиболее мощных критериев оценки является критерий Т.В. Андерсона. Основным преимуществом этого критерия является то, что заключение о справедливости выдвинутой гипотезы делается на основании результатов анализа всей совокупности случайных величин с учётом каждого отдельного значения.

Однородность значений показателей надёжности с помощью критерия A оценивают в такой последовательности:

1) - составляют вариационный ряд значений двух выборок, объединённых вместе по возрастанию

$$1,2,3,...S'_{i},S''_{i}...S'_{m},S''_{n}=m+n,$$

где S' - порядковый номер значений случайной величины из первой выборки, S" - тоже из второй выборки

2) – вычисляют значение:

$$A = \frac{1}{m \cdot n \cdot (m+n)} \left[m \sum_{i=1}^{m} (S'_{i} - i)^{2} + n \sum_{j=1}^{n} (S''_{j} - j)^{2} \right] - \frac{4m \cdot n - 1}{6(m+n)},$$

Определяем справедливость гипотезы об однородности из условия:

$$\lim P\{A < z\} = a_z$$

Значения функции a_z табулированы и приведены в справочной литературе. Для оценки однородности вместо функции a_z воспользуемся значением A^* , определяемым по формуле:

$$A^* = \frac{A - \frac{1}{16} \left(\frac{m+n}{m \cdot n}\right) - \frac{3}{256} \left(\frac{m+n}{m \cdot n}\right)^2}{1 + \frac{1}{m+n} - \frac{3}{8} \left(\frac{m+n}{m \cdot n}\right) - \frac{9}{128} \left(\frac{m+n}{m \cdot n}\right)^2}$$

Для проверки гипотезы об однородности результатов наблюдений при заданных значениях и уровня значимости сравнивают расчётную величину A^* с критическим значением A_{α} (табл.4 приложения). Если соблюдается условие:

$$A^* = \begin{cases} <\!\!A_{\alpha}\!\!$$
 - гипотезу не отвергают и данные можно считать однородными, $\ge \!\! A_{\alpha}\!\!$ - гипотеза не принимается.

После того, как проведена проверка на однородность выборочных наблюдений, можно приступать к определению основных статистических характеристик.

Задания для самостоятельной работы:

- 1. Ознакомиться с текстом лекций.
- 2. Ответить на контрольные вопросы для самопроверки.

Основная литература:

[1-6] из раздела 7.

Дополнительная литература:

[7-10] из раздела 7.

Контрольные вопросы для самопроверки

- 1. Определение значения критерия χ^2
- 2. Определение значения критерия Андерсона

Лабораторная работа №3.

Тема: Первичная обработка экспериментального материала.

<u>Цель работы:</u> Изучение расчетов первичной обработки экспериментального материала.

Задание: Изучить расчеты первичной обработки экспериментального материала.

Состоит в упорядочении выборочных наблюдений. Упорядочение выборочных наблюдений состоит в расположении наблюдавшихся значений (ресурсов, наработок до отказа) в возрастающем порядке $(t_1 < t_2 < ... < t_i)$.

Полученный ряд называется ранжированным или вариационным, а различные значения t_i - вариантами. Если число членов вариационного ряда велико (n > 100), то для удобства наблюдавшиеся значения группируют по интервалам, образуя интервальный ряд.

Число интервалов (r) определяют используя правило Старджеса для выборки объема n: $r = 1 + 3.3 \ln(n)$

Определяют длину интервала h:

$$h = \frac{t_{\text{max}} - t_{\text{min}}}{r},$$

где t_{max} и t_{min} - соответственно наибольший и наименьший варианты.

Определяют середины интервалов t_{coi} . Данные заносятся в таблицу 3.1.

Подсчитывают частоты m_i для каждого интервала, т.е. число наблюдений со значениями вариант t_i , попадающими в данный интервал:

$$\sum_{i=1}^{k} m_i = \sum_{j=1}^{r} m_j = n,$$

где k - число вариант,

r - число интервалов,

n - объем выборки.

Определяют частости (ρ_i) для каждого интервала:

$$\rho(t) = \frac{m_i}{n}; \sum P(t) = 1.$$

По результатам вычислений (ρ_i) строят гистограмму относительных частот (рис.3.1).

Таблица 3.1

N интервала	Интервал h_i	Середина интервала t_{cpi}	Частота m_i	Частость ρ(t)
1	2	3	4	5

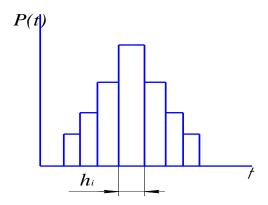


Рис.3.1. – Гистограмма относительных частот

Задания для самостоятельной работы:

- 1. Ознакомиться с текстом лекций.
- 2. Ответить на контрольные вопросы для самопроверки.

Основная литература:

[1-6] из раздела 7.

Дополнительная литература:

[7-10] из раздела 7.

Контрольные вопросы для самопроверки

1. В чем заключается первичная обработка экспериментального материала?

Лабораторная работа №4.

<u>Тема</u>: Вычисление статистических характеристик для эмпирической функции распределения <u>Цель работы</u>: Определение статистических характеристик

<u>Задание:</u> Вычислить статистические характеристики для эмпирической функции распределения

Каждой числовой характеристике случайной величины соответствует её статистическая аналогия.

Для математического ожидания аналогом является среднее арифметическое (выборочное среднее, статистическое среднее, средневзвешенное) или μ_1 - статистический начальный момент первого порядка.

Среднее арифметическое характеризует центр группировки значений случайной величины и при увеличении числа наблюдений приближается к ее математическому ожиданию (рис.3.3):

$$\bar{t} = M^*[t] = \frac{1}{n} \sum_{i=1}^n t_i = \sum_{j=1}^r t_j p_j; \mu_1 = \bar{t}$$

где t_j - середина j-го интервала, r - число интервалов,

 p_j - частность.

Для дисперсии аналогом является выборочная дисперсия (статистическая дисперсия) или μ_2 - статистический центральный момент второго порядка. Он характеризует степень рассеивания значений случайной величины относительно её математического ожидания (рис.3.3).

Для выборки n > 20:

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (t_{i} - \bar{t})^{2} = \frac{1}{n} \sum_{j=1}^{r} (t_{j} - \bar{t})^{2} \cdot p_{j};$$

$$D^*[t] = \sum_{j=1}^r t_j p_j - (M^*[t])^2; \mu_2 = D^*[t].$$

Для выборки n < 20:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (t_{i} - \bar{t})^{2} = \frac{1}{n-1} \sum_{j=1}^{r} (t_{j} - \bar{t})^{2} \cdot p_{j},$$

где $(t_i - \bar{t}\,)$ - центрированная случайная величина, соответствует переносу начала координат в центральную точку - математическое ожидание.

Несмещённое значение статистической дисперсии:

$$\widetilde{D}[t] = \frac{r}{r-1} \cdot D^*[t].$$

Для того, чтобы мера изменчивости была выражена в тех же единицах измерения, что и случайная величина для характеристики рассеяния, принимают также выборочное среднее квадратическое отклонение - аналог среднего квадратического отклонения:

$$S = \sqrt{S^2} = \overline{\sigma}[t] = \sqrt{\widetilde{D}[t]}.$$

Коэффициент вариации. Является мерой рассеяния случайной величины, как и дисперсия.

Асимметрия A(t) или μ_3 - статистический центральный момент третьего порядка. Характеризует отклонение кривой распределения от симметричной (рис.4.4).

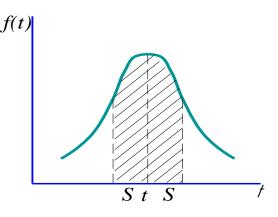
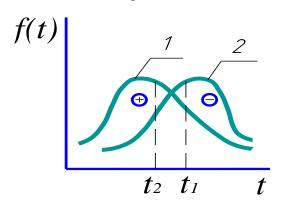



Рис. 4.1.- Гистограмма

Рис. 4.2. - Дисперсия

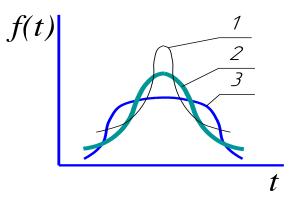


Рис. 4.3. - Асимметрия

Рис. 4.4. - Эксцесс

$$\mu_{3} = \frac{1}{n} \sum_{i=1}^{n} (t_{i} - \bar{t})^{3} = \frac{1}{n} \sum_{j=1}^{r} (t_{j} - \bar{t})^{3} \cdot p_{j};$$

$$A(t) = \frac{\mu_{3}}{\sigma^{3}} = \frac{\mu_{3}}{\mu_{2}^{3/2}},$$

при $\mu_3 < 0$ - асимметрия отрицательная (кривая 1),

 $\mu_3 = 0$ - симметричное распределение,

 $\mu_3 > 0$ - асимметрия положительная (кривая 2).

Эксцесс E(t) или μ_4 - статистический центральный момент четвёртого порядка. Характеризует островершинность:

$$\mu_4 = \frac{1}{n} \sum_{i=1}^{n} (t_i - \bar{t})^4 = \frac{1}{n} \sum_{j=1}^{r} (t_j - \bar{t})^4 p_j;$$

$$E(t) = \frac{\mu_4}{\sigma^4} - 3 = \frac{\mu_4}{\mu_2^2} - 3,$$

при E(t) > 0 - вершина острая (кривая 1),

E(t) = 0 - нормальное распределение (кривая 2),

E(t) < 0 - вершина пологая (кривая 3).

Условные варианты

Для удобства вычисления эмпирических моментов применяют условные варианты:

$$U_i = \frac{t_i - c}{h_i},$$

где c - условный нуль (постоянная величина),

 $h_i = h$ - длина интервала.

За условный ноль принимается обычно значение t_i с наибольшей частотой или равноудалённое от краевых значений. Подсчитывают значения u_i и заносят в табл.4.1.

Таблица 4.1

u_i	$m_i u_i$	$m_i u_i^2$	$m_i u_i^3$	$m_i u_i^4$
1	2	3	4	5

Вычисляют начальные моменты для условных вариант (условные эмпирические моменты) a_1, a_2, a_3, a_4 :

$$a_k = \frac{1}{n} \sum_{i=1}^n m_i u_i^k.$$

Вычисляют центральные моменты для условных вариант:

$$\mu_{1} = 0,$$

$$\mu_{2} = a_{2} - a_{1}^{2},$$

$$\mu_{3} = a_{3} - 3a_{2}a_{1} + 2a_{1}^{3},$$

$$\mu_{4} = a_{4} - 4a_{3}a_{1} + 6a_{2}a_{1} - 3a_{1}^{4}.$$

Выполняют обратный переход от условных вариант к действительным. Определяют статистическое среднее:

$$\bar{t} = a_1 h + c$$
.

Определяют среднее квадратическое отклонение:

$$S = h\sqrt{\mu_2}$$
.

Задания для самостоятельной работы:

- 1. Ознакомиться с текстом лекций.
- 2. Ответить на контрольные вопросы для самопроверки.

Основная литература:

[1-6] из раздела 7.

Дополнительная литература:

[7-10] из раздела 7.

10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

- Microsoft Imagine Premium (OC Windows 7 Professional);
- Microsoft Office 2007 Russian Academic OPEN No Level;
- Kaspersky Endpoint Security для бизнеса Расширенный Russian Edition. 1000-1499 Node 1 year Educational Renewal License;
 - КОМПАС-3D V13;
 - APM WinMachine.

11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Вид занятия	Наименование аудитории	Перечень основного оборудования	№ ЛР, ПЗ
1	2	3	4
ЛР	Лаборатория автоматизации систем проектирования	Учебная мебель, системный блок (AMD 690G,mANX,HDD Seagate 250Gb,DIMM DDR//2*512Mb,DVDRV,FDD; Системный блок Cel D-315; Системный блок Cel D-315; Системный блок CPU 4000.2*512MB; Монитор Терминал TFT 19 LG L1953S-SF; Системный блок AMD Athlon 64X2; Системный блок Celeron 2,66; Сканер HP 3770; Монитор 15 LG; Системный блок iCel 433; Принтер HP LJ P2015	№ 1- № 4
Лк	Лекционная аудитория (мультимедийный класс)	Учебная мебель, проектор мультимедийный «CASIO» XJ-UT310WN с настенным креплением CASIO YM-88 Интерактивная доска Promethean 88 АстіvВоагd Touch Dry Erase 6 касаний с настенным креплением и программным обеспечением Promethean ActivInspire Moнитор 17"LG L1753-SF (silverblek) Системный блок (AMD 690G,mANX,HDD Seagate 250Gb,DIMM DDR//2*512Mb,DVDRV,FDD	-
СР	Ч3-1	Учебная мебель, оборудование 10- ПК i5-2500/H67/4Gb (монитор ТFT19 Samsung); принтер HP LaserJet P2055D	-

Приложение 1 ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

1. Описание фонда оценочных средств (паспорт)

№ компе- тенции	Элемент компетенции	Раздел	ФОС
ОК-1	Способность к абстрактному мышлению, анализу, синтезу		
ПК-11	Способность осуществлять контроль за параметрами технологических процессов производства и эксплуатации наземных транспортнотехнологических средств и их технологического оборудования	1. Основные положения и зависимости надежности Зависимости между случайными величинами	Вопросы к зачету 1–8
ПК-12	Способность проводить стандартные испытания наземных транспортнотехнологических средств и их технологического оборудования Способность осуществлять	2. Математические основы теории надежности Физические основы теории надежности	Вопросы к зачету 9-15
2.8	контроль за параметрами		
ПСК- 2.9	технологических процессов и эксплуатации средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ и их технологического оборудования Способность проводить стандартные испытания	3. Надежность систем Испытания на надежность	Вопросы к зачету 16-23
	средств механизации и автоматизации подъемнотранспортных, строительных и дорожных работ	4. Надежность отдельных классов строительных машин	Вопросы к зачету 24-27

2. Вопросы к зачету

	2.	Вопросы к зачету		
№		Компетенции	вопросы к зачету	№ и наименование раздела
п/п	Код	Определение		pusa
1	2	3	4	5
1.	ОК-1	Способность к	1.Понятия надёжности.	1.Основные
		абстрактному	2.Показатели надежности.	положения и
		мышлению, анализу,	3.Случайные величины и их	зависимости
		синтезу	характеристики.	надежности
			4.Общие зависимости.	Зависимости между
			5. Надежность в период нормальной	случайными
2.	ПК-11	Способность	эксплуатации.	величинами
		осуществлять	6. Надежность в период постепенных	
		контроль за	отказов.	
		параметрами	7.Совместное действие внезапных и	
		технологических	постепенных отказов.	
		процессов	8.Особенности надежности	
		производства и	восстанавливаемых изделий.	
		эксплуатации		
		наземных транспортно-	9.Определение закона распределения	2.Математические
		технологических	функций.	основы теории
		средств и их	10.Применение корреляционного	надежности
		технологического	анализа к зависимостям надежности.	Физические основы
		оборудования	11.Метод статического	теории надежности
		F 7/ (моделирования.	
3.	ПК-12	Способность	12.Случайные функции.	
		проводить	13. Применение статистических	
		стандартные	методов подобия к определению	
		испытания наземных	усталостных характеристик деталей	
		транспортно-	машин.	
		технологических	14.Оценка надежности при	
		средств и их	механическом изнашивании.	
		технологического	15. Оценка надежности по критерию	
		оборудования	теплостойкости.	
	HOL	0 5		
4.	ПСК-	Способность	16 11	2 11
	2.8	осуществлять	16. Надежность последовательной	3. Надежность
		контроль за	системы при нормальном	систем Испытания на
		параметрами технологических	распределении нагрузки по системам. 17. Оценка надежности системы типа	Испытания на
		процессов и	цепи.	падежность
		эксплуатации средств	18. Надежность систем с	
		механизации и	резервированием.	
		автоматизации	19. Специфика оценки надежности	
		подъемно-	машин по результатам испытаний.	
		транспортных,	20. Определительные испытания.	
		строительных и	21. Форсирование режима испытаний.	
		дорожных работ и их	22. Сокращение числа образцов.	
		технологического	23. Контрольные испытания.	
		оборудования	-	
		1		

5.	ПСК- 2.9	Способность проводить стандартные испытания средств	24.Общие направления повышения надежности машин.25.Автомобили.26.Строительные машины.	4. Надежность отдельных классов строительных машин
		механизации и автоматизации подъемно- транспортных, строительных и дорожных работ	27. Роботы.	

3. Описание показателей и критериев оценивания компетенций

Показатели	Оценка	Критерии
Знать: (ОК-1) -основные понятия в сфере наземных транспортно-технологических средств; (ПК-11) -методику контроля параметров технологических процессов и эксплуатации средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ и их технологического оборудования; (ПК-12) -методики стандартных испытаний наземных транспортно-технологических средств и их технологического оборудования; (ПСК-2.8) -методику контроля параметров технологических процессов и эксплуатации средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ и их технологического оборудования; (ПСК-2.9) -методики стандартных испытаний строительных и дорожных машин и оборудования. Уметь: (ОК-1) -обобщать, анализировать, систематизировать информацию в области наземных транспортно-технологических средств; (ПК-11) -проводить контроль за параметрами технологических процессов и эксплуатации средств механизации и автоматизации средств	зачтено	оценка «зачтено» выставляется обучающемуся, если вопросы раскрыты, изложены логично, без существенных ошибок, показано умение иллюстрировать теоретические положения конкретными примерами, продемонстрировано усвоение ранее изученных вопросов и сформированность компетенций. Допускаются незначительные ошибки.

подъемно-транспортных, строительных и дорожных работ и их технологического оборудования;

 $(\Pi K-12)$

-проводить стандартные испытания наземных транспортно-технологических средств и их технологического оборудования;

(ПСК-2.8)

-проводить контроль за параметрами технологических процессов и эксплуатации средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ и их технологического оборудования;

 $(\Pi CK - 2.9)$

-проводить стандартные испытания средств механизации и автоматизации подъемнотранспортных, строительных и дорожных работ.

Владеть:

(OK-1)

-способностями к абстрактному мышлению, анализу, синтезу в сфере наземных транспортно-технологических средств;

 $(\Pi K-11)$

-методиками контроля за параметрами технологических процессов и эксплуатации средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ и их технологического оборудования;

(ПK-12)

-навыками проведения стандартных испытаний наземных транспортнотехнологических средств и их технологического оборудования;

(ПСК-2.8)

-методиками контроля за параметрами технологических процессов и эксплуатации средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ и их технологического оборудования;

(ПСК-2.9)

-навыками проведения стандартных испытаний средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ.

не зачтено

оценка «не зачтено» выставляется, если не раскрыто основное содержание учебного материала; обнаружено незнание или непонимание большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, которые не исправлены после нескольких наводящих вопросов; не сформированы компетенции, умения и навыки.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности

Изучение дисциплины «Надежность механических систем» охватывает круг вопросов, относящихся к производственно-технологической деятельности выпускника в соответствии с компетенциями и видами деятельности, указанными в учебном плане.

При подготовке к экзамену рекомендуется особое внимание уделить следующим вопросам:

- 1. .Основные положения и зависимости надежности. Зависимости между случайными величинами.
- 2. Математические основы теории надежности. Физические основы теории надежности.
- 3. Надежность систем. Испытания на надежность.
- 4. Надежность отдельных классов строительных машин.

Закрепление всех вопросов, рекомендуемых для лабораторных работ, а также при подготовке к зачету, требует основательной самостоятельной подготовки. Учитывая значимость самостоятельной работы, литература, вопросы для самопроверки - в разделах «Лабораторные работы» и «Фонд оценочных средств».

Работа с литературой является обязательной. При этом приветствуется привлечение дополнительных источников из Интернета. В случае возникновения определенных вопросов, обучающийся может обратиться к преподавателю за консультацией как на лабораторных работах, так и во время индивидуальных консультаций.

Предусмотрено проведение аудиторных занятий в виде лекций, лабораторных работ, в сочетании с внеаудиторной работой.

АННОТАЦИЯ

рабочей программы дисциплины Надежность механических систем

1. Цели и задачи дисциплины

Целью изучения дисциплины является осуществление информационного поиска по надежности механических систем подъемно-транспортных, строительных, дорожных средств и оборудования; участие в составе коллектива исполнителей в разработке технических условий на проектирование и техническое описание подъемно-транспортных, строительных, дорожных средств и оборудования.

Задачей изучения дисциплины является: получение общих сведений о показателях надежности механических систем; получение общих сведений об испытаниях на надежность; получение общих сведений об общих направлениях повышения надежности.

2. Структура дисциплины

2.1 Распределение трудоемкости по отдельным видам учебных занятий, включая самостоятельную работу: ЛР – 4 час., Лк-4 час., СР – 60 час. Общая трудоемкость дисциплины составляет 72 часа, 2 зачетных единицы.

2.2 Основные разделы дисциплины:

- 1. Основные положения и зависимости надежности. Зависимости между случайными величинами.
- 2. Математические основы теории надежности. Физические основы теории надежности.
- 3. Надежность систем. Испытания на надежность.
- 4. Надежность отдельных классов строительных машин.

3. Планируемые результаты обучения (перечень компетенций)

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ОК-1 способность к абстрактному мышлению, анализу, синтезу;
- ПК-11 способность осуществлять контроль за параметрами технологических процессов производства и эксплуатации наземных транспортно-технологических средств и их технологического оборудования;
- ПК-12 способность проводить стандартные испытания наземных транспортнотехнологических средств и их технологического оборудования;
- ПСК-2.8 способность осуществлять контроль за параметрами технологических процессов и эксплуатации средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ и их технологического оборудования;
- ПСК-2.9 способность проводить стандартные испытания средств механизации и автоматизации подъемно- транспортных, строительных и дорожных работ.

4. Вид промежуточной аттестации: зачет.

Протокол о дополнениях и изменениях в рабочей программе на 20___-20___ учебный год

1. В рабочую программу по дисциплине вносятся следующие дополнения:	
2. В рабочую программу по дисциплине вносятся следующие изменения:	
Протокол заседания кафедры СДМ № от «»	20 г.,
Заведующий кафедрой	(Ф.И.О.)

Программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 23.05.01 Наземные транспортно-технологические средства от «11» августа 2016г. №1022 для набора 2013 года: и учебным планом ФГБОУ ВО «БрГУ» для заочной формы обучения от «03»июля 2018 г. №413

для набора 2014 года: и учебным планом ФГБОУ ВО «БрГУ» для заочной формы обучения от «03»июля 2018 г. №413

Программу составил:

Кобзов Дмитрий Юрьевич, д.т.н., профессор Рабочая программа рассмотрена и утверждена на заседании кафедры СДМ от « » <u>декабря</u> 2018г., протокол № И.о. заведующего кафедрой СДМ К.Н. Фигура СОГЛАСОВАНО: И.о. заведующего кафедрой СДМ К.Н. Фигура Т.Ф. Сотник Директор библиотеки Рабочая программа одобрена методической комиссией МФ от « » <u>декабря</u> 2018 г., протокол № Председатель методической комиссии МФ Г.Н. Плеханов СОГЛАСОВАНО: Начальник учебно-методического управления Г.П. Нежевец Регистрационный №