МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БРАТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра подъемно-транспортных, строительных, дорожных машин и оборудования

УТВ]	ЕРЖДАЮ:
Прор	ектор по учебной работе
	Е.И.Луковникова
‹ ‹	» декабря 2018 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ОСНОВЫ КОНСТРУИРОВАНИЯ МАШИН ДЛЯ СЕВЕРНЫХ УСЛОВИЙ ЭКСПЛУАТАЦИИ

Б1.В.ДВ.07.01

СПЕЦИАЛЬНОСТЬ

23.05.01 Наземные транспортно-технологические средства

СПЕЦИАЛИЗАЦИЯ

Подъемно-транспортные, строительные, дорожные средства и оборудование

Программа специалитета

Квалификация выпускника: инженер

	СОДЕРЖАНИЕ ПРОГРАММЫ	Стр.
1.	ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	. 3
2.	МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ	4
3.	РАСПРЕДЕЛЕНИЕ ОБЪЕМА ДИСЦИПЛИНЫ	
4.	СОДЕРЖАНИЕ ДИСЦИПЛИНЫ	6
	 4.1 Распределение разделов дисциплины по видам учебных занятий 4.2 Содержание дисциплины, структурированное по разделам и темам 4.3 Лабораторные работы 4.4 Практические занятия 4.5. Контрольные мероприятия: курсовой проект (курсовая работа), контрольная работа, РГР, реферат 	6 . 7
5.		10
6.	ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНІ	E 11
7.	ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	11
8.	ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО – ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ» НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ	12
9.	МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ . 9.1. Методические указания для обучающихся по выполнению лабораторных работ,	12 12
1(практических занятий. О. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	38
11	1. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ	. 39
	Приложение 1. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине	
	Приложение 2. Аннотация рабочей программы дисциплины	

1. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Вид деятельности выпускника

Дисциплина охватывает круг вопросов, относящихся к производственнотехнологическому виду профессиональной деятельности выпускника в соответствии с компетенциями и видами деятельности, указанными в учебном плане.

Цель дисциплины

- подготовка будущего инженера к решению профессиональных, научно-технических задач в сфере теории и современных методов проектирования и расчета элементов узлов и деталей, работающих при низких температурах.

Задачи дисциплины

- изучение конструктивных особенностей машин, предназначенных для эксплуатации в районах с холодным климатом;
- изучение влияния низких температур на свойства материалов и обрабатываемой среды;
 - изучение методов расчета на прочность при низких температурах;
 - привитие навыков самообразования и самосовершенствования;
- содействие средствами данной дисциплины развитию у инженеров личностных качеств, определяемых общими целями обучения и воспитания.

Код	Содержание	Перечень планируемых результатов			
компетенции	компетенций	обучения по дисциплине			
1	2	3			
ПСК- 2.7	способность разрабатывать	знать: методики и требования к			
	технологическую документацию	разработке и применению			
	для производства, модернизации,	технологической документации для			
	эксплуатации, технического	эксплуатации, технического			
	обслуживания и ремонта средств	обслуживания и ремонта средств			
	механизации и автоматизации	механизации и автоматизации			
	подъемно-транспортных, подъемно-транспортных, строител				
	строительных и дорожных работ	и дорожных работ;			
		уметь: разрабатывать и применять на			
		практике технологическую			
		документацию для эксплуатации,			
		технического обслуживания и ремонта			
		средств механизации и автоматизации			
		подъемно-транспортных, строительных			
		и дорожных работ;			
		владеть: основными методиками и			
		требованиями к разработке и			
		применению технологической			
		документации для эксплуатации,			
		технического обслуживания и ремонта			
		средств механизации и автоматизации			
		подъемно-транспортных, строительных			
		и дорожных работ.			
ПК-10	способность разрабатывать	знать: - нормы разработки			
	технологическую документацию	технологической документации для			
	для производства, модернизации,	производства, модернизации,			
	эксплуатации, технического	эксплуатации, технического			
	обслуживания и ремонта	обслуживания и ремонта наземных			
	наземных транспортно-	транспортно-технологических средств			

технологических средств и их	и их технологического оборудования;
технологического и оборудования	уметь: - разрабатывать
	технологическую документацию для
	производства, модернизации,
	эксплуатации, технического
	обслуживания и ремонта наземных
	транспортно-технологических средств
	и их технологического оборудования;
	владеть: - навыками разработки
	технологической документации для
	производства, модернизации,
	эксплуатации, технического
	обслуживания и ремонта наземных
	транспортно-технологических средств
	и их технологического оборудования;

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина Б1.В.ДВ.07.01 «Основы конструирования машин для северных условий эксплуатаций» относится к элективной части.

Дисциплина «Основы конструирования машин для северных условий эксплуатаций» базируется на знаниях, полученных при изучении дисциплин: «Детали машин и основы конструирования», «Теория механизмов и машин», «Основы проектирования машин», «Проектирование подъемно-транспортных, строительных, дорожных средств и оборудования».

Основываясь на изучении перечисленных дисциплин «Основы конструирования машин для северных условий эксплуатаций» представляет основу для преддипломной практики и подготовки к государственной итоговой аттестации.

Такое системное междисциплинарное изучение направлено на достижение требуемого ФГОС уровня подготовки по квалификации «специалист».

3. РАСПРЕДЕЛЕНИЕ ОБЪЕМА ДИСЦИПЛИНЫ

3.1. Распределение объема дисциплины по формам обучения

		Трудоемкость дисциплины в часах						acax	— Курсовая		
Форма обучения	Курс	Семестр	Всего часов (с экз.)	Аудиторных часов	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	курсовая работа (проект), контроль ная работа, реферат,	Вид промежу точной аттеста ции	
1	2	3	4	5	6	7	8	9	10	11	
Очная	3	5	288	34	17	-	17	227	-	экзамен	
Заочная	5	-	288	8	4	-	4	271	-	экзамен	
Заочная (ускоренное обучение)	-	-	-	-	-	-	-	-	-	-	
Очно-заочная	-	-	-	-	-	-	-	-	-	-	

3.2. Распределение объема дисциплины по видам учебных занятий и трудоемкости

Вид учебных занятий	Трудо- емкость (час.)	в т.ч. в интерактивной, активной, иннова- циионной формах, (час.)	Распределение по семестрам, час 5
1	2	3	4
I. Контактная работа обучающихся с преподавателем (всего)	34	-	34
Лекции (Лк)	17	-	17
Практические занятия	17	10	17
Групповые (индивидуальные) консультации	+	-	+
П. Самостоятельная работа обучающихся (СР)	227	-	227
Подготовка к практическим занятиям	177	-	177
Подготовка к экзамену в течение семестра	50	-	50
III. Промежуточная аттестация экзамен	27	-	27
Общая трудоемкость дисциплины час.	288	-	288
зач. ед.	8	-	8

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Распределение разделов дисциплины по видам учебных занятий

- для очной формы обучения:

<u>№</u> раз-	Наименование раздела	Трудоемкость,	Виды учебных занятий, включая самостоятельную работу обучающихся и трудоемкость; (час.)				
дела	дисциплины	(час.)	учебны	е занятия	Самостоятельная работа обучающихся		
	oucquiumio.		лекции	практические занятия			
1	2	3	4	5	6		
2.	Природно-климатическая характеристика районов с холодным климатом и влияние низких температур на эксплуатацию машин и механизмов Конструктивные	30	1,5	2	25,5		
	особенности машин, предназначенных для северных условий эксплуатации						
3.	Характеристики металлов при низких температурах	37	3	3	31		
4.	Определение нагрузок, действующих на рабочие органы СДМ при низких температурах	36	2	4	30		
5.	Расчет на прочность элементов машин при низких	36	3	2	31		

	температурах				
6.	Особенности производства	32	2,5	2	27,5
	земляных работ в северных				
	условиях				
7.	Обеспечение экономической	27	1,5	1	24,5
	эффективности				
	проектирования и				
	эксплуатации машин для				
	северных условий				
8.	Техника безопасности при	30	2	-	28
	эксплуатации машин в				
	зимнее время				
	ИТОГО	261	17	17	227

- для заочной формы обучения:

<u>№</u> раз- дела	Наименование раздела дисциплины	Трудоемкость, (час.)	самостоя и	учебных занят тельную рабоп и трудоемкост е занятия практические занятия	пу обучающихся
1	2	3	4	6	7
1.	Природно-климатическая характеристика районов с холодным климатом и влияние низких температур на эксплуатацию машин и механизмов	32,5	0,5	0,5	31,5
2.	Конструктивные особенности машин, предназначенных для северных условий эксплуатации	36	0,5	0,5	35
3.	Характеристики металлов при низких температурах	34,75	0,25	0,5	34
4.	Определение нагрузок, действующих на рабочие органы СДМ при низких температурах	42	1	1	40
5.	Расчет на прочность элементов машин при низких температурах	32,5	0,5	0,5	31,5
6.	Особенности производства земляных работ в северных условиях	32,5	0,5	0,5	31,5
7.	Обеспечение экономической эффективности проектирования и эксплуатации машин для северных условий	37	0,5	0,5	36
8.	Техника безопасности при эксплуатации машин в зимнее время	31,75	0,25	-	31,5
	ИТОГО	279	4	4	271

4.2. Содержание дисциплины, структурированное по разделам и темам.

<u>№</u> раздела	Наименование раздела дисциплины	Содержание лекционных занятий	Вид занятия в интерактивной, активной, инновационной формах, (час.)
1	2	3	4
1.	Природно- климатическая характеристика районов с холодным климатом и влияние низких температур на эксплуатацию машин и механизмов	Содержание курса и его связь с другими учебными дисциплинами. Климатические зоны РФ и характеристика районов с холодным климатом. Характеристика мерзлых и вечномерзлых грунтов.	-
2.	Конструктивные особенности машин, предназначенных для северных условий эксплуатации	Особенности эксплуатации машин и механизмов при низких температурах. Основные требования к обеспечению работоспособности и надежности машин. Особенности конструкций машин	-
3.	Характеристики металлов при низких температурах	Влияние температуры на сопротивление стали хрупкому разрушению. Влияние конструкционных и технологических факторов на хрупкость металлов.	-
4.	Определение нагрузок, действующих на рабочие органы СДМ при низких температурах	Характер нагружения рабочего оборудования. Выбор основных параметров одноковшовых экскаваторов и стреловых самоходных кранов исполнения XЛ.	-
5.	Расчет на прочность	Расчет по предельному состоянию наступления текучести. Расчет по предельному состоянию наступления разрушения от концентраторов.	-
6.	Особенности производства земляных работ в северных условиях	Классификация методов разработки мерзлых грунтов. Требования к конструкции и эксплуатации машин для земляных работ в условиях мерзлых грунтов.	-
7.	Обеспечение экономической эффективности проектирования и эксплуатации машин для северных условий	Экономическое обоснование организационных решений. Экономика решения технических задач. Эффективность применения методов разработки мерзлых грунтов.	-
8.	Техника безопасности при эксплуатации машин в зимнее время	Техника безопасности при разработке мерзлых грунтов. Охрана труда машинистов СДМ в зимнее время.	-

4.3. Лабораторные работы.

Учебным планом не предусмотрено.

4.4. Практические занятия.

№ n/n	Номер раздела дисциплины	Наименование тем практических занятий	Объем (час.)	Вид занятия в интерактивной, активной, инновационной формах, (час.)
1.	1.	Определение расчетной глубины промерзания в заданном районе.	3	тренинги в малой группе (2 час.)
2.	2.	Особенности конструкций строительных и дорожных машин в исполнении ХЛ.	2	решение проблем в группах смешанного состава (2 час.)
3.	3.	Методы испытаний материалов для определения их сопротивляемости хрупкому разрушению.	3	тренинги в малой группе (2 час.)
4.	4.	Определение нагрузок, действующих на рабочие органы СДМ при низких температурах.	4	-
5.	5.	Расчет на выносливость при низких температурах. Расчет на усталостную прочность.	2	решение проблем в группах смешанного состава (2 час.)
6.	6.	Определение времени оттаивания мерзлого грунта.	2	тренинги в малой группе (2 час.)
7.	7.	Определение эффективности применения методов разработки мерзлых грунтов.	1	
		ОТОТИ	17	10

4.5. Контрольные мероприятия: курсовой проект (курсовая работа), контрольная работа, РГР, реферат

Учебным планом не предусмотрены.

5. МАТРИЦА СООТНЕСЕНИЯ РАЗДЕЛОВ УЧЕБНОЙ ДИСЦИПЛИНЫ К ФОРМИРУЕМЫМ В НИХ КОМПЕТЕНЦИЯМ И ОЦЕНКЕ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Компетенции		Компе	пенции			Вид учебных	
	Кол-во	ПСК	ПК	Σ κοмп.	t_{cp} , час		Оценка
№, наименование	часов	2.7	2.7 10		<i>сер,</i> чис	занятий	результатов
разделов дисциплины			_				•
1	2	3	4	5	6	7 H/: HD GD	8
1. Природно-климатическая	30	+	+	2	15	ЛК, ПЗ, СР	Экзамен
характеристика районов с холодным							
климатом и влияние низких температур на							
эксплуатацию машин и механизмов							
2. Конструктивные особенности машин,	33	+	+	2	16,5	ЛК, ПЗ, СР	Экзамен
предназначенных для северных условий							
эксплуатации							
3. Характеристики металлов при низких	37	+	+	2	18,5	ЛК, ПЗ, СР	Экзамен
температурах					,	, ,	
4. Определение нагрузок, действующих	36	+	+	2	18	Лк, ПЗ, СР	Экзамен
на рабочие органы СДМ при низких	20	·		_	10	71K, 113, C1	O ROUNION
температурах							
5. Расчет на прочность элементов машин	36	+	+	2	18	Лк, ПЗ, СР	Экзамен
при низких температурах	30	'	'	2	10	71K, 115, C1	OKSamen
1 71	22	+ .		2	1.6	п. пр ср	7
6. Особенности производства земляных	32	+	+	2	16	Лк, ПЗ, СР	Экзамен
работ в северных условиях					10.5	H HD CD	
7. Обеспечение экономической	27	+	+	2	13,5	Лк, ПЗ, СР	Экзамен
эффективности проектирования и							
эксплуатации машин для северных условий							
8. Техника безопасности при	30	+	+	2	15	Лк, СР	Экзамен
эксплуатации машин в зимнее время							
всего часов	261	130,5	130,5	2	130,5		

6.ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

- 1. Методы и средства разработки грунтов в районах с холодным климатом: Учебное пособие/ В.А.Кузьмичев, И.М.Ефремов, С.А.Зеньков, Ю.Н.Кулаков, А.А.Кононов. Братск: БрГТУ, 2006. 82с.
- 2. Методы и средства разработки грунтов в районах с холодным климатом: Учебное пособие/ Ефремов И.М., Зеньков С.А., Кулаков Ю.Н., Кононов А.А.. Братск: БрГТУ, 2003. 82 с.

7. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ,

НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Nº	Наименование издания	Вид заня- тия	Количе ство экземпл яров в библио теке, шт.	Обеспечен- ность, (экз./ чел.)
	Основная литература			
1.	Технология подготовки грунтов к разработке в зимний период / С.И. Васильев, В.Н. Анферов, В.М. Мелкозеров, А.С. Ортман ; Министерство образования и науки Российской Федерации, Сибирский Федеральный университет Красноярск : Сибирский федеральный университет, 2013 136 с. : табл., схем Библиогр. в кн ISBN 978-5-7638-2542-8 ; То же [Электронный ресурс].	П3 СР	ЭР	1
	-URL: http://biblioclub.ru/index.php?page=book&id=364089 Дополнительная литература			
2.	Курочкин А.А. Основы расчета и конструирования машин и аппаратов перерабатывающих производств: учеб. пособие для вузов / А. А. Курочкин, В. М. Зимняков Москва: КолосС, 2006 320 с.	П3 СР	5	0,2
3.	Методы и средства разработки грунтов в районах с холодным климатом: Учебное пособие/ В.А. Кузьмичев, И.М.Ефремов, С.А.Зеньков, Ю.Н.Кулаков, А.А.Кононов Братск: БрГУ, 2006 82с.	П3 СР	60	1
4.	Растегаев И.К. Машины для вечномерзлых грунтов. Учеб.пособие для вузов/И.К. Растегаев М.: Машиностроение, 1986 216с.	Лк ПЗ	17	0,68
5.	Машины для строительства и содержания дорог и аэродромов. Исследование, расчет, конструирование : учебное пособие / В.П. Павлов, В.В. Минин, В.А. Байкалов, М.И. Артемьев ; под ред. В.П. Павлова Красноярск : Сибирский федеральный университет, 2011 196 с ISBN 978-5-7638-2128-4 ; То же [Электронный ресурс] URL: http://biblioclub.ru/index.php?page=book&id=229183	СР	ЭP	1

8. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО - ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ» НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1. Электронный каталог библиотеки БрГУ

http://irbis.brstu.ru/CGI/irbis64r_15/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=BOOK&P21DBN=BOOK&S21CNR=&Z21ID=.

2. Электронная библиотека БрГУ

http://ecat.brstu.ru/catalog.

- 3. Электронно-библиотечная система «Университетская библиотека online» http://biblioclub.ru .

9. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Работа на лекциях: ведение конспекта лекционного материала для успешного использования его при подготовке к зачету, экзамену, закрепления и расширения теоретических знаний. После проработки лекционного материала обучающийся должен четко владеть следующими аспектами по каждой лекции:

- знать тему;
- четко представлять план лекции;
- уметь выделять основное, главное;
- усвоить значение примеров и иллюстраций.

Самостоятельная работа выполняет функцию закрепления, повторения изученного материала. Выполнение самостоятельной работы способствует углублению знаний и более успешному формированию умений и навыков, связанных с изучением конкретных тем.

Характер самостоятельной работы: решение задач, которые выполняются по заданию и при методическом руководстве преподавателя, а также без его непосредственного участия. Правильное выполнение заданий по самостоятельной работе развивает способности самостоятельно работать с информацией, используя учебную и научную литературу. Самостоятельная работа дисциплинирует обучающихся, развивает произвольное внимание и совершенствует навыки целесообразного восприятия.

9.1. Методические указания для обучающихся по выполнению практических занятий.

Практическое занятие №1.

<u>Тема:</u> Определение расчетной глубины промерзания в заданном районе <u>Цель работы:</u> Определить расчетную глубину промерзания в заданном районе Порядок выполнения:

Теоретические сведения

В естественном состоянии грунты представляют собой дисперсную массу из неоднородных тел, взаимодействующих с воздухом и водой. Влаги в таком грунте значительно больше, чем в воздушно-сухом. Последний гигроскопичен и поэтому влажен, поскольку влажен окружающий воздух. Наибольшая гигроскопическая влажность, для лесков не превышает 1 %, для пыли - 7%, а для глины она возрастает до 17% от веса сухого вещества грунта.

Физические процессы, которые происходят при замерзании воды в грунте, изменяют его физико-механические свойства в результате развития сил смерзания образуется монолитнаямасса, трудно поддающаяся разрушению. В связи с этим грунты, подлежащие разработке в зимнее время, должны быть подготовлены к экскавации путем их предохранения от промерзания, рыхлением или оттаиванием.

Без предварительного рыхления мерзлый грунт можно разрабатывать экскаватором с ковшом емкостью 0.5 м^3 при толщине мерзлого слоя до 0.26 м, с ковшом емкостью 1 м^3 и более при толщине мерзлого слоя до 0,4 м.

Использование в комплекте с экскаватором однозубых реперов рм.г-2 на тракторе ДЭТ-250 позволяет послойно разрабатывать мерзлый грунт при глубине промерзания до 1,2 м, а применение трехзубых рыхлителей д-652 на тракторе ДЭТ-250 — при глубине промерзания до 2,5 м. Это относится и к разработке деятельного слоя в районах многолетнемерзлых грунтов, если глубина промерзания деятельного слоя не достигла многолетнемерзлой толщи и не превышает указанных пределов.

Объем грунтов, подлежащий разработке в зимнее время, устанавливается при составлении проекта организации строительства и уточняется в проекте производства работ. Глубина промерзания существенно влияет и на выбор способа и механизмов предэкскавационной подготовки мерзлых грунтов.

Задание 1

Требуется определить расчетное количество зимних градусо-дней на 15 февраля и их процентное отношение к общей годовой сумме градусо-дней для г. Барнаула.

По таблице 2 для г. Казани сумма февральских градусо-дней составляет 339, а за 15 дней февраля она равна:

$$\frac{339 * 15}{28} = 181,6$$

Количество градусо-дней за ноябрь, декабрь и январь равно соответственно 117, 326 и 403. Следовательно, общее количество градусо-дней на 15 февраля составит:

$$117 + 326 + 403 + 182 = 1028$$

Аналогично определяется и процент градусо-дней от годовой суммы: $8.5 + 23.7 + 29.3 + \frac{24.6*15}{28} = 74.7\%$

$$8,5 + 23,7 + 29,3 + \frac{24,6 * 15}{28} = 74,7\%$$

Задание 2

Требуется определить расчетную глубину промерзания в районе г. Казань на 15 февраля.

По таблице 2 устанавливаем, что сумма зимних градусо-дней в процентах от общего

количества за зимний период равна:
$$8.5 + 23.7 + 29.3 + \frac{24.6 * 15}{28} = 74.7\%$$

По карте (рис.1) находим нормативную глубину сезонного промерзания для района г. Казани - 160 *см*. По таблице 3 для 75-процентного количества градусо-дней и 160 *см* сезонной глубины промерзания устанавливаем, что на 15 февраля грунт промерзает на глубину 138 см.

Форма отчетности:

Отчет должен содержать:

- 1. Цель работы.
- 2. Задание.
- 3. Поэтапное выполнение задания.
- 4. Заключение.

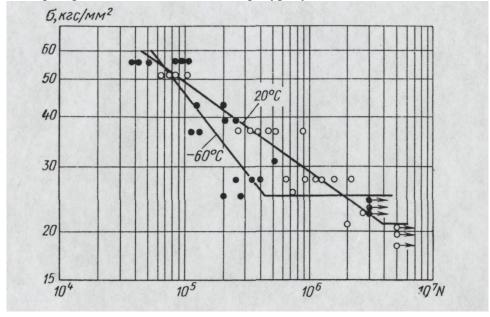
Основная литература [1] Дополнительная литература [2-4]

Практическое занятие №2.

<u>Тема:</u> Особенности конструкций строительных и дорожных машин в исполнении XЛ. Цель работы: Исследовать прочность при низких температурах, рассчитать усталостную прочность по изгибу, рассчитать статистическую прочность по изгибу, Порядок выполнения:

1. Исследование прочности при низких температурах

Лабораторные исследования прочности зубчатых колес при низких температурах проводились на колесах с модулем 3 мм: из сталей 45 и 40X в нормализованном, улучшенном и закаленном состояниях.


При статическом нагружении зубьев на изгиб при температурах до —60° С значительного изменения разрушающего усилия не наблюдалось. Относительная деформация, замеряемая в выкружке зуба, составлявшая при 20° С ε_P =0,13-0,15, с понижением температуры до —60° С снижалась примерно в 2 раза. Критические температуры, соответствующие появлению хрупкого излома, в исследуемом диапазоне температур не наблюдались. Характер изменения прочности в зависимости от температуры испытания для различной ширины образцов b =10, 14 и 18 мм был одинаков. Только для закаленных колес из стали обеих марок при ширине b= 18 мм отмечалось более заметное падение разрушающего усилия с понижением температуры. Деформации у закаленных колес не измерялись вследствие их малых значений.

При испытании зубчатых колес на усталостную прочность усилие, соответствующее пределу выносливости, с понижением температуры во всех случаях повышалось.

На рис. 1 приведены усталостные кривые, полученные при испытании на изгиб зубьев колес из стали 45 нормализованной, для температур испытания 20 и — 60° С. Ниже приведены результаты испытаний колес из нормализованных сталей 45 и 40X.

Материал..... Сталь 45 Сталь 40Х Предел выносливости σ_0 при пульсирующей нагрузке, $\kappa z c / M M^2$. при C: 20..... 20,9 40.5 47,5 24,2 -60..... Показатель степени *т* при "С: 20..... 4,5 5,03 3,5 -60..... 2,23 Усталостная долговечность N_0 при σ_0 и °C: 20..... $3.6 \cdot 10^6$ $2.7 \cdot 10^6$ -60..... $0.41 \cdot 10^6$ $0.45 \cdot 10^6$

Снижение температуры испытания уменьшает долговечность в зоне ограниченной выносливости. Зона разброса с понижением температуры увеличивается.

Для положительных температур принято считать, что накопление усталостных повреждений, получаемое циклическим нагружением деталей машин, не доведенным до разрушения детали, незначительно снижает статическую прочность и в руководствах по расчету деталей машин, например в работе Д. Н. Решетова, не учитывается.

Испытания зубчатых колес из стали 45 нормализованной с предварительным циклическим нагружением при $t=20^{\circ}$ С и последующим статическим нагружением при этой температуре привели к аналогичным результатам. Незначительно снизилась статическая прочность только при циклических нагрузках, составлявших $\sigma = (1,3 \div 1,6)\sigma_0$ и при числе циклов предварительного нагружения $N \ge 0.8 N_P$ где N_P — число циклов, соответствующее разрушению зубьев при данной интенсивности циклического нагружения.

Накопление усталостных повреждений при температуре 20° С и последующее статическое нагружение зуба при температуре —60° С для зубчатых колес из того же материала показало значительное снижение статической прочности (рис. 2). Понижение тем больше, чем больше интенсивность нагрузки и степень накопления повреждений. Колеса из улучшенных сталей (марок 45 и 40Х) менее чувствительны к накоплению повреждений. Накопление усталостных повреждений в результате предварительных циклических нагружений приводит также к снижению пластичности при статическом изломе зуба. Кривые, показывающие снижение относительного удлинения в выкружке зуба в зависимости от интенсивности нагрузки и степени накопления повреждений, приведены также на рис. 2.

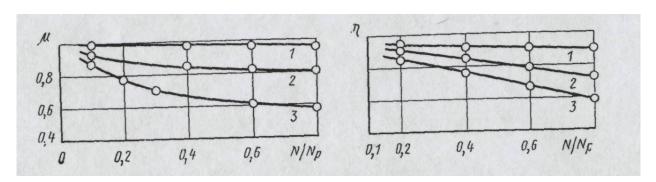


Рисунок 2 - Зависимость снижения статической прочности зубьев μ пластичности η от степени накопления усталостных повреждении при различной интенсивности предварительного циклического нагружения:

1 - при 1,1
$$\sigma_0$$
; г— 1,3 σ_0 ; 3 — 1,6 σ_0

2. Общие положения

Для зубчатых колес основным направлением в повышении надежности работы при низких температурах следует считать выбор материала и термической обработки колес, обеспечивающих достаточное сохранение пластичности при низких температурах. Материал шестерни, исходя из равнопрочное^{тм} зубьев шестерни и колеса, должен обладать лучшими механическими свойствами, чем материал колес.

Особый расчет зубчатых колес, работающих при низких температурах, имеющий целью предотвратить хрупкий излом зубьев зубчатых колес, относится только К расчету на прочность по изгибу. Из теоретических предпосылок и практики эксплуатации можно принять, что контактная прочность зубчатых колес не меняется при низких температурах и контактную прочность следует рассчитывать так же, как и при эксплуатации в нормальных температурных условиях.

Методика расчета зубчатых передач, работающих при температуре до —60° C, состоит из следующих этапов:

- а) расчет на усталостную прочность по изгибу;
- б) расчет на статическую прочность по изгибу с проверкой пластичности.

Методика предполагает наличие графика нагрузок по времени их действия как длительных, так и кратковременных (пусковые нагрузки, кратковременная работа с нагрузками выше номинальных). Отличие данного расчета от расчета на прочность по изгибу для зубчатых колес, работающих при положительной температуре, заключается в следующем:

- а) в расчете на статическую прочность учтено влияние при пониженных температурах накопления усталостных повреждений;
- б) для зубчатых колес, материал которых при пониженных температурах находится в квазихрупком состоянии, введен поверочный расчет для определения запаса пластичности.

Допустимые запасы по усталостной и статической прочности в зубчатых передачах повышают: в 1,2 раза — если поломка зубьев ведет к аварии машины; в 1,5 раза — если поломка зубьев ведет к аварии ряда машин; в 1,8 раза — если поломка зубьев может привести к человеческим жертвам. Для крупномодульных колес (m=20-30 мм) допустимые запасы прочности увеличивают в 1,2—1,3 раза.

3. Расчет на усталостную прочность по изгибу

При расчете на усталостную прочность по изгибу в качестве исходной номинальной нагрузки по графику нагрузки принимают наибольшую нагрузку, общая продолжительность действия которой на одну из боковых поверхностей зуба равна или превосходит 10^5 циклов за весь расчетный срок службы зацепления.

В передачах с переменной частотой вращения за номинальную принимают частоту вращения, соответствующую номинальному значению нагрузки.

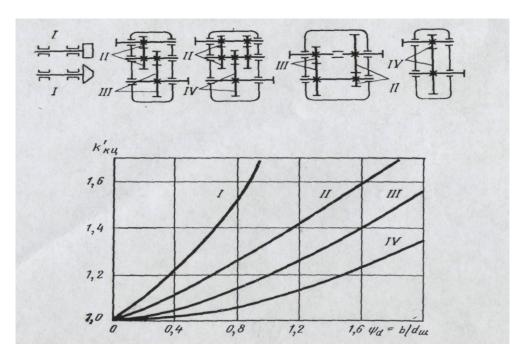


Рисунок 3 - График определения коэффициента концентрации нагрузки в зубчатых передачах: I—IV — типы передач

Таблица 1 - Коэффициент формы зуба У

Число зубьев z	Коэффициент смещения инструмента ^ξ						
meno syobeb z	-0,2	0	+0,2	+0,5			
16 17 20 25 30 40	- - 0,222 0,242 0,257	0,224 0,232 0,243 0,252 0,259 0,266 0,268	0,251 0,252 0,257 0,262 0,266 0,272 0,273	0,274 0,274 0,276 0,277 0,277 0,277 0,276			
50 60 80 100	0,261 0,262 0,262 0,262	0,268 0,267 0,266	0,272	0,276			

Дополнительные нагрузки, возникающие в зацеплении от его неточностей (ошибка шага и профиля, концентрация нагрузки по длине зуба и т. п.), в номинальную нагрузку не входят и учитываются коэффициентом нагрузки

$$k = k_{\kappa u} k_{\partial u H}$$

Где $k_{\kappa u}$ — коэффициент концентрации нагрузки по ширине колеса;

 $k_{\scriptscriptstyle \partial u \scriptscriptstyle H}$ — коэффициент динамичности нагрузки, значения которого приведены ниже.

Степепь точности передачи	6	7	8
Окружная скорость и, м/с:			
до 1	1	1	1,1/1
1-3	1	1,2	1,3
4-8	1,2	1,4/1,3	1,5/1,4
9—12			

Примечание. В числителе приведены данные при твердости рабочей поверхности до HB 350, н знаменателе — свыше HB 350.

Коэффициент концентрации нагрузки
$$k_{\kappa H} = k_{\kappa H} (1-x) + x$$
 где $x = \sum M_i n_i T_i / (M \sum n_i T_i)$; $k_{\kappa H}$ - выбирают по графику на рис. 3

Напряжения изгиба в зубьях зубчатого колеса

$$\sigma_u = \frac{2M_{\kappa}k}{Ym^2zb}$$

где M_{κ} — момент на колесе; Y— коэффициент формы зуба (табл. 1);

z— число зубьев, b — ширина колеса.

Коэффициент формы зуба Y учитывает также концентрацию напряжений в выкружке у основания зуба, что дает для напряжений изгиба так называемые максимальные напряжения (с учетом концентрации напряжений).

Для всех ступеней нагрузки, учитываемых в расчете на усталостную прочность зубчатых колес, определяют суммарное эквивалентное число циклов

$$N_{\mathfrak{F}} = 60nT \sum \left[\left(\frac{M_i}{M} \right)^m \frac{n_i}{n} \frac{T_i}{T} \right]$$

где M_i, n_i, T_i — соответственно моменты на колесе, частота вращения в минуту и продолжительность в часах для отдельных ступеней графика нагрузки (показатель степени m=3); M, n u T— соответственно номинальный момент на колесе, номинальная частота вращения в минуту и общий срок службы в часах.

Запас прочности при числе циклов $N_3 > N_0 = 10^6$ определяют по формулам: для нереверсивных передач (зубчатое колесо работает одной стороной зуба)

$$n_{ycm} = \frac{\sigma_0}{\sigma_u}$$

для реверсивных передач (зубчатое колесо работает обеими сторонами зуба)

$$n_{ycm} = \frac{\sigma_{-1}}{\sigma_u}$$

При отсутствии значений предела выносливости а0 при пульсирующей нагрузке или предела выносливости см при знакопеременной симметричной нагрузке для нормализованных, улучшенных и объемно-закаленных сталей принимают

$$\sigma_0 = 0.3\sigma_{ec} + 950$$
kec/cm²; $\sigma_{-1} = 0.2\sigma_{ec} + 630$ kec/cm²

где σ_{sc} — предел прочности сердцевины зуба. Запас прочности при числе циклов Nэ<N)=106 определяют по формулам: для нереверсивных передач

$$n_{ycm} = \frac{\sigma_0}{\sigma_u} \sqrt[m]{\frac{N_0}{N_2}}$$

для реверсивных передач

$$n_{ycm} = \frac{\sigma_{-1}}{\sigma_{u}} \sqrt[m]{\frac{N_{0}}{N_{2}}}$$

Получаемые запасы прочности не учитывают некоторого повышения предела выносливости с понижением температуры, что идет в запас прочности. Допускаемый запас по усталостной прочности при заготовках из проката или поковок принимают: при нормализации и улучшении $[n]_{yem} = 1,5$; при объемной закалке $[n]_{yem} = 1,8$.

4. Расчет на статическую прочность по изгибу

Расчет зубчатых колес на статическую прочность по изгибу, работающих при пониженных температурах до -60° C, включает: проверку запаса прочности по напряжениям изгиба в зубьях; проверку запаса пластичности по деформациям в выкружке у основания зуба.

В расчете за номинальную нагрузку принимают наибольшую нагрузку на зубчатом колесе $M_{\rm max}$, определенную с учетом возникающих инерционных сил, кратковременных перегрузок и т. п.

Дополнительные нагрузки, возникающие из-за неточности-зацепления, в номинальную нагрузку не входят и учитываются коэффициентом нагрузки $k = k_{\kappa\nu} k_{\partial\mu\nu}$.

При расчете на статическую прочность с использованием наибольшего значения M_{\max} расчетную формулу для определения напряжения σ_{\max} изгиба в зубе колеса, а также

значения коэффициента k нагрузки и коэффициента Y формы зуба принимают те же, что и при расчете на усталостную прочность (см. §3).

Помимо разрушающего действия все действующие на зубчатое колесо максимальные нагрузки при $\sigma_{\text{max}} > \sigma_0$ и при общем числе циклов, превышающем $2 \cdot 10^4$, вызывают при пониженных температурах снижение статической прочности и пластичности из-за накопления усталостных повреждений.

Степень накопления усталостных повреждений определяется эквивалентным числом циклов перегрузки

$$N_{\mathcal{G}} = 60n'T' \sum \left[\left(\frac{M_{i}}{M_{\text{max}}} \right)^{m} \frac{n_{i}}{n'} \frac{T_{i}}{T'} \right]$$

где M_i , n_i , T_i — соответственно моменты на колесе, частоты вращения колеса в об/мин и продолжительность в часах для отдельных ступеней нагрузки, учитываемых как перегрузочные; M_i , n_i , T_i — соответственно максимальный момент (принимаемый как номинальный), соответствующая ему частота вращения (в об/мин) и суммарная продолжительность перегрузочных ступеней (в часах) за весь срок службы; m — показатель степени, m=3.

Коэффициент понижения статической прочности при накоплении усталостных повреждений

$$\mu_1 = 1 - \alpha_{\sigma} \left(\frac{\sigma_{\text{max}} - \sigma_0}{\sigma_P} \right)^2 \lg \frac{N_9}{N_0}$$

где σ_P — разрушающее напряжение при однократном статическом нагружении, $\sigma_P \approx \sigma_{BP}$; $N_{9}^{'}$ — эквивалентное число циклов перегрузки; $N_{0}^{'}$ — число циклов, до которого циклическая нагрузка не сказывается на понижении статической прочности (по экспериментальным данным $N_{0}^{'} = 2 \cdot 10^{4}$); α_{σ} —эмпирический коэффициент, значения которого в зависимости от материала и термообработки приведены ниже.

Материал	Сталь 45	Сталь 40Х
α_{σ}	8,4/5,1	6,0/4,5
α_{ε}	1,45/1,4	1,7/1,3

Примечание. В числителе приведены данные при нормализованной термообработке в знаменателе — при улучшенной термообработке.

Запас прочности по статическому действию нагрузки

$$n = \frac{\sigma_{BP}}{\sigma_{max}} \mu_1$$

Допускаемый запас прочности при заготовках из проката или поковок: при нормализации и улучшении [n]=2; при объемной закалке [n]=2-3 .

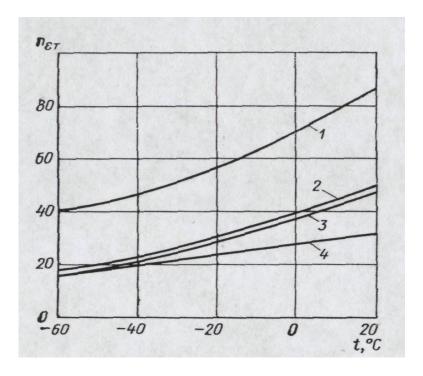


Рисунок 4 - Зависимость условного коэффициента запаса пластичности $n_{\varepsilon T}$ зубчатых колес от температуры: 1— сталь 45, нормализация, $\sigma_B = 60 \kappa z c / m M^2$, $\sigma_T = 35 \kappa z c / m M^2$; 2 — сталь 45, улучшение, $\sigma_B = 80 \kappa z c / m M^2$, $\sigma_T = 50 \kappa z c / m M^2$; 3— сталь 40X, нормализация, $\sigma_B = 95 \kappa z c / m M^2$, $\sigma_T = 55 \kappa z c / m M^2$; 4 — сталь 40X, улучшение, , $\sigma_B = 105 \kappa z c / m M^2$, $\sigma_T = 80 \kappa z c / m M^2$

Для определения запаса пластичности используют значения условного коэффициента запаса пластичности $n_{\varepsilon T}$, приведенные на рис. 4. Коэффициент понижения пластичности при накоплении усталостных повреждений

$$\eta_1 = 1 - \alpha_{\varepsilon} \left(\frac{\sigma_{\text{max}} - \sigma_0}{\sigma_P} \right) \lg \frac{N_0}{N_0}$$

Значения n_{eT} приведены выше.

Запас пластичности при статическом действии нагрузки

$$n_{\varepsilon} = n_{\varepsilon T} \frac{\sigma_T}{\sigma_{\text{max}}} \eta_1$$

Допускаемый запас пластичности для изгибной прочности зуба принимают: при перегрузках только на пусковых режимах $[n]_{\varepsilon}=10\div20$; при перегрузках на рабочих режимах $[n]_{\varepsilon}=20\div40$.

5. Пример расчета

Следует рассчитать на прочность зубчатую пару при работе ее в условиях пониженных температур до — 60° С. Режим работы по графику рис. 5. Срок службы L=10 лет. Использование механизма по времени: в течение года $K_{\Gamma}=0,5$; в течение суток $K_{C}=0,3$, в течение цикла — ПВ 25%. Передаваемая мощность (соответствующая моменту M по графику рис. 104) N=10 кВт. Передача нереверсивная.

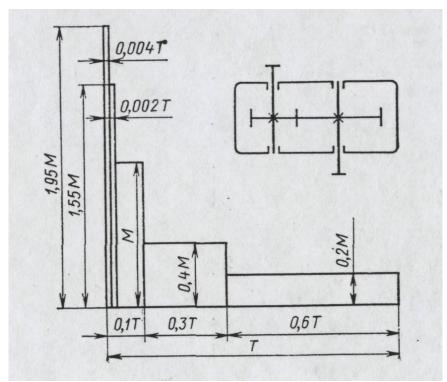


Рисунок 5 - Схема зубчатой передачи и график нагрузки

Исходные данные: число зубьев z_{III} =28, z_{K} = 56; модуль зацепления m = 4 мм; коэффициент коррекции ξ = 0; диаметр делительной окружности d_{III} = 112 мм, d_{K} = 224 мм; рабочая ширина колес b = 120 мм; межосевое расстояние a=168 мм; частота вращения n_{III} = 70 об/мин, n_{K} ,, = 35 об/мин; материал зубчатых колес — сталь 40X; термообработка шестерни— улучшение, колеса—нормализация; предел прочности шестерни σ_{B} =95 κ zc/mm², колеса σ_{B} =85 κ zc/mm²; предел текучести шестерни σ_{T} =75 κ zc/mm², колеса σ_{T} =65 κ zc/mm²; твердость шестерни HB 250, колеса HB 210; степень точности (по ГОСТ 1643—72) 7.

При расчете на усталостную прочность общее время работы передачи за весь срок службы

$$T = 364LK_{\Gamma} 24K_{C} \frac{\Pi B\%}{100} = 10 \cdot 365 \cdot 0,5 \cdot 24 \cdot 0,3 \frac{25}{100} = 3285u$$

Число циклов нагружения зубьев при перегрузках за весь срок службы для шестерни составит:

для
$$1,95M$$
 $T_1^{'}=0.004T$ и $N_{1III}^{'}=60nT_1=60\cdot70\cdot0.004\cdot3285=0.553\cdot10^5$; для $1.55M$ $T_2^{'}=0.002T$ и $N_{2III}^{'}=60nT_2=60\cdot70\cdot0.002\cdot3285=0.276\cdot10^5$.

Для колеса число циклов соответственно будет в 2 раза меньше. Продолжительность действия отдельных перегрузок в циклах не превышает 10^5 , и в расчете на усталостную прочность перегрузки не учитывают.

Номинальные крутящие моменты

$$M_{III} = 97400 \frac{N}{n_{III}} = 97400 \frac{10}{70} = 14000 \kappa c c \cdot c M$$

$$M_{K} = 97400 \frac{N}{n_{K}} = 97400 \frac{10}{35} = 28000 \kappa c c \cdot c M$$

Коэффициент ширины шестерни

$$\psi_d = \frac{b}{d_{III}} = \frac{120}{112} = 1,07$$

Коэффициент концентрации нагрузки (рис. 3, передача IV)

$$x = \frac{\sum M_i T_i}{M \sum T_i} = \frac{M \cdot 0.1T + 0.4M \cdot 0.3T + 0.2M \cdot 0.6T}{M(0.1T + 0.3T + 0.6T)} = 0.34$$

$$k_{xu} = k_{xu}'(1 - x) + x = 1.13(1 - 0.34) + 0.34 = 1.1$$

Окружная скорость на зубьях колес

$$U = \frac{\pi d_{uu} n_{uu}}{60 \cdot 1000} = \frac{3.14 \cdot 112 \cdot 70}{60 \cdot 1000} = 0.41$$

Коэффициент динамичности нагрузки $k_{\partial u \mu} = 1$. Коэффициент нагрузки $k = k_{\kappa u} k_{\partial u \mu} = 1, 1 \cdot 1 = 1, 1$. Коэффициент формы зуба (табл. 1) шестерни и колеса

$$Y_{III} = 0.256, z_{III} = 28, \xi_{III} = 0$$

 $Y_K = 0.268, z_K = 56, \xi_K = 0$

Напряжения изгиба в зубьях шестерни и колеса

$$\sigma_{MM} = \frac{2M_{III}k}{Y_{III}m^2z_{III}b} = \frac{2\cdot14000\cdot1.1}{0.256\cdot0.4^2\cdot28\cdot12} = 2240\kappa c/cm^2$$

$$\sigma_{\mathit{MK}} = \frac{2M_{\mathit{K}}k}{Y_{\mathit{K}}m^2z_{\mathit{K}}b} = \frac{2 \cdot 28000 \cdot 1.1}{0.268 \cdot 0.4^2 \cdot 56 \cdot 12} = 2140 \kappa ac/cm^2$$

Предел выносливости для материала шестерни и колеса при пульсирующей нагрузке (нереверсивная передача)

$$\sigma_{OIII} = 0.3\sigma_{BIII} + 950 = 0.3 \cdot 9500 + 950 = 3800 \kappa z c / cm^2$$

 $\sigma_{OK} = 0.3\sigma_{BK} + 950 = 0.3 \cdot 8500 + 950 = 3500 \kappa z c / cm^2$

Ступени по графику нагрузки (рис. 104), учитываемые в расчете на усталостную прочность ($M_{\scriptscriptstyle HOM}=M$);

Эквивалентное число циклов

$$N_{\Im III} = 60n_{III}T\sum \left(\frac{M_i}{M}\right)^m \frac{T_i}{T} = 60 \cdot 70 \cdot 3285 \cdot (1^3 \cdot 0.1 + 0.4^3 \cdot 0.3 + 0.2^2 \cdot 0.6) =$$

$$= 1.72 \cdot 10^6 > 10^6$$

$$N_{\Im K} = N_{\Im III} \frac{n_K}{n_{III}} = 1.72 \frac{35}{70} = 0.86 \cdot 10^6 < 10^6$$

Запас прочности по усталостному разрушению

$$\begin{split} n_{ycmIII} &= \frac{\sigma_{OIII}}{\sigma_{IIII}} = \frac{3800}{2240} = 1,7 \\ n_{ycmK} &= \frac{\sigma_{0K}}{\sigma_{uK}} \sqrt[m]{\frac{N_0}{N_{2K}}} = \frac{3500}{2140} \sqrt[3]{\frac{10^6}{0,86 \cdot 10^6}} = 1,72 \end{split}$$

Допускаемый запас прочности при нормализации и улучшении (§ 3) $[n]_{vcm} = 1,5$.

При расчете на статическую прочность за номинальную нагрузку принимаем максимальную нагрузку по графику (рис. 5) $M_{\rm max} = 1.95 M$.

Напряжения изгиба в зубьях шестерни и колеса при максимальной нагрузке

$$\sigma_{\max III} = \sigma_{IIIII} \frac{M_{\max}}{M} = 2240 \cdot 1.95 = 4380 \kappa c / c M^3$$

$$\sigma_{\max K} = \sigma_{IKK} \frac{M_{\max}}{M} = 2140 \cdot 1.95 = 4190 \kappa c / c M^3$$

Отношение максимальных напряжений к пределу выносливости

$$\frac{\sigma_{\text{max }III}}{\sigma_{OIII}} = \frac{4380}{3800} = 1.15$$
 $\frac{\sigma_{\text{max }K}}{\sigma_{OK}} = \frac{4190}{3500} = 1.2$

Ступени по графику нагрузки (рис. 5), учитываемые при определении накопления усталостного повреждения зубчатых колес:

Эквивалентное число циклов, соответствующее накоплению усталостного повреждения при перегрузках,

$$N_{\Im III} = 60n_{III}T\sum \left[\left(\frac{M_{i}}{M_{\text{max}}} \right)^{m} \frac{T_{i}}{T} \right] = 60 \cdot 70 \cdot 3285(1^{3} \cdot 0.004 + 0.8^{3} \cdot 0.002) = 6.9 \cdot 10^{4}$$

$$N_{\Im K} = N_{\Im III} \frac{n_{K}}{n_{III}} = 6.9 \cdot 10^{4} \frac{35}{70} = 3.45 \cdot 10^{4}$$

Коэффициент понижения статической прочности при накоплении повреждений ($\alpha_{\sigma\!H\!I}=4.5; \alpha_{\sigma\!K}=6$)

$$\begin{split} \mu_1 &= 1 - \alpha_{\sigma III} \left(\frac{\sigma_{\max III} - \sigma_{0III}}{\sigma_{BIII}} \right)^2 \lg \frac{N_{9}^{'}}{N_{0}^{'}} = 1 - 4.5 \left(\frac{4380 - 3800}{9500} \right)^2 \lg \frac{6.9 \cdot 10^4}{2 \cdot 10^4} = 0.39 \\ \mu_1 &= 1 - \alpha_{\sigma K} \left(\frac{\sigma_{\max K} - \sigma_{0K}}{\sigma_{BK}} \right)^2 \lg \frac{N_{9K}^{'}}{N_{0}^{'}} = 1 - 6.0 \left(\frac{4190 - 3500}{8500} \right)^2 \lg \frac{3.45 \cdot 10^3}{2 \cdot 10^4} = 0.99 \end{split}$$

Запас прочности

$$n_{III} = \frac{\sigma_{BIII}}{\sigma_{\text{max }III}} \mu_{1III} = \frac{9500}{4380} 0,99 = 2,14$$

$$n_{K} = \frac{\sigma_{BK}}{\sigma_{\text{max }K}} \mu_{1K} = \frac{8500}{4190} 0,99 = 2,0$$

Допускаемый запас статической прочности при нормализации и улучшении (§ 4) [n]=2.

При проверке запаса пластичности условный его запас для температуры —60° С и материала зубчатых колес и шестерен по графику на рис. 4 $n_{\it eTMI}=17\,$ и $n_{\it eTK}=16\,$.

Коэффициент понижения пластичности вследствие накопления усталостных повреждений ($n_{\it sHI}=1.3$; $n_{\it sK}=1.7$):

$$\eta_{1} = 1 - \alpha_{elll} \left(\frac{\sigma_{\max III} - \sigma_{0III}}{\sigma_{BIII}} \right) \lg \frac{N_{9III}^{'}}{N_{0}^{'2}} = 1 - 1, 3 \left(\frac{4380 - 3800}{9500} \right) \lg \frac{6.9 \cdot 10^{4}}{2 \cdot 10^{4}} = 0.957$$

$$\eta_{1K} = 1 - \alpha_{eK} \left(\frac{\sigma_{\max K} - \sigma_{0K}}{\sigma_{BK}} \right) \lg \frac{N_{9K}^{'}}{N_{0}^{'}} = 1 - 1, 7 \left(\frac{4190 - 3500}{8500} \right) \lg \frac{3.45 \cdot 10^{4}}{2 \cdot 10^{4}} = 0.967$$

Запас пластичности

$$n_{\varepsilon III} = n_{\varepsilon TIII} \frac{\sigma_{TIII}}{\sigma_{\max III}} \eta_{1III} = 16 \frac{7500}{4380} 0.957 = 26$$

$$n_{\varepsilon K} = n_{\varepsilon TK} \frac{\sigma_{TK}}{\sigma_{\max K}} \eta_{1K} = 16 \frac{6500}{4190} 0.967 = 24$$

Допускаемый запас пластичности (§ 4) $[n]_{\varepsilon} = 20 \div 40$. Запасы пластичности шестерни и колеса можно считать достаточными.

Форма отчетности:

Отчет должен содержать:

- 1.Цель работы.
- 2. Задание.
- 3. Поэтапное выполнение задания.
- 4. Заключение.

Основная литература
[1]
Дополнительная литература
[2-4]

Практическое занятие №3.

<u>Тема:</u> Методы испытаний материалов для определения их сопротивляемости хрупкому разрушению.

<u>Цель работы:</u> Изучить методы испытаний материалов для определения их сопротивляемости хрупкому разрушению

Порядок выполнения:

Теоретические сведения

<u>Прочность</u>-способность грунтов сопротивляться внешним нагрузкам. Разрушаемость грунтов во многом зависит от их прочности. Различают сопротивляемость грунтов разрушению при различных элементарных и сложный видах деформации: при одноосном сжатии, разрыве, сдвиге, изгибе, вдавливании и резании.

Основными из элементарных деформаций, от которых происходит собственно разрушение грунта, являются разрыв и сдвиг.

Считается. что не мерзлые грунты вообще не сопротивляются разрыву, поэтому при механических способах разрушения грунтов следует применять такие методы и такие рабочие органы, при которых основной деформацией является разрыв, т.е. отрыв грунта от массива.

<u>Сдвиг</u> . При сдвиге разрушение происходит по плоскости скольжения в результате воздействия касательных напряжений (формула Кулона).

$$r = C_0 + \sigma \mu_3$$

 ${\bf r}$ - разрушающее касательное напряжение, кг/см²,

С₀ -сцепление грунта при сдвиге, величина **С**₀ соответствует чистому сдвигу при σ =0,

\sigma-нормальное напряжение-сжатие или растяжение, действующие перпендикулярно к площадке сдвига, кг/см²,

 μ_3 -коэффициент внутреннего трения.

Для сыпучих грунтов, у которых отсутствует сцепление С₀, величина

$$r = \sigma \mu_3$$

т.е. сопротивление сдвигу определяется только их трением.

Классификация грунтов по трудности их разработки.

Существующие классификации грунтов Госстроя. проф. Прогодьковова и другие классифицирую грунты по трудности разработки на ряд групп грунта. Но практически один и тот же грунт в зависимости от его влажности и другим факторам может быть слабым, средним или крепким. Более того глины относятся к 3-4группам, а при повышенной влажности разрабатываются более легко, чем сухие грунты 1-2 групп.

Поэтому экскаватор, работающий нВ более "легких" условиях. например, на сухой супеси может не выполнять план, экскаватор` работающий на так называемом "тяжелом" грунте, например, влажной глине, может перевыполнять свое задание.

Новая классификационная шкала применительно к работе одноковшовых универсальных экскаваторах была утверждена ГОСТом 9698-67 и введена с1января 1968 года для обязательного применения при производстве земляных работ.

Определение группы грунтов по методу доктора технических наук АН. Зеленина, принятое в этом стандарте представлено в таблице 3.

В ней в основу классификации грунтов по их сопротивляемости резанью экскаваторными машинами принято число ударов динамического плотномера.

Таблица 3

Группа грунта	1	2	3	4	5	6	7	8
С-число ударов								
динамического	14	58	916	1634	3570	70140	140280	280
плотномера(ударник								550
ДорНИИ)								

Динамический плотномер (ударник ДорНИИ) получил применение в дорожном деле для оценки несущей способности грунтовых дорог. Груз весом 2,5 кгс падает с высоты 40 см на буртик, производя за каждый удар работу 10 кДж (рис. 2).

Число ударов характеризует грунт, при погружении наконечника. Наконечник сделан в виде цилиндрического стержня высотой (длиной) 100 мм с площадью поперечного сечения, равной 1 см^2 .

Приведенная классификация справедлива для всех грунтов от песков до тяжелых глин включительно. При разработке землеройными машинами не грунтов, а редко встречающихся других материалов (строит. Мусор. щебень) следует пользоваться классификацией ГОССТРОЯ.

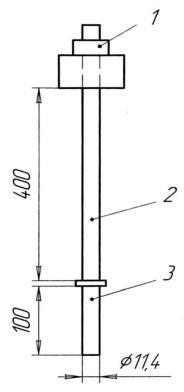


Рис.2. Динамический плотномер:

1 – груз, 2 – рабочий стержень, 3 – наконечник.

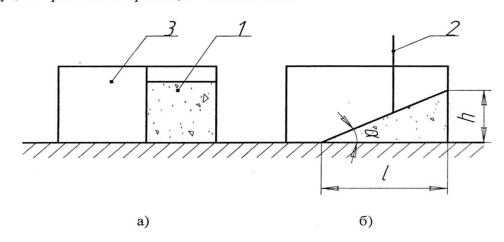


Рис. 3. Прибор Литвинова для определения угла естественного откоса песка.

1 - малый отсек, 2 - задвижка, 3 - большой отсек.

Величина С определяется как среднеарифметическое из пяти измерений на квадрате со стороной 1м.

Рассмотренная классификация сопротивляемости резанию мерзлых и немерзлых грунтов соответствует физической сущности процесса резания и достаточна точна. т.к. определяется большим численным диапазоном значений С позволяем быстро определить место грунта внутри шкалы при помощи динамического плотномера и дает возможность

более точно установить границу применения практикуемой машины, а также определить нормы выработки для землеройных машин и конкретных условиях разработок.

Пример

Требуется определить группу грунта по методу доктора технических наук АН. Зеленина при помощи динамического плотномера (ударник ДорНИИ).

В ходе эксперимента было проведено пять измерений динамического плотномера на квадрате со стороной 1м, число ударов которых равно: 6, 3, 8, 5, 7. Величину С определили как среднеарифметическое число ударов динамического плотномера из пяти измерений, равное 5,8.

Таким образом, по таблице 3 находим, что при С≈6 грунт относится ко 2 группе по его сопротивляемости резанью экскаваторными машинам.

Форма отчетности:

Отчет должен содержать:

- 1. Цель работы.
- 2. Задание.
- 3. Поэтапное выполнение задания.
- 4. Заключение.

Основная литература
[1]
Дополнительная литература
[2-4]

Практическое занятие №4.

<u>Тема:</u> Определение нагрузок, действующих на рабочие органы СДМ при низких температурах

<u>Цель работы:</u> Определить нагрузки, действующие на рабочие органы СДМ при низких температурах

Порядок выполнения:

Теоретические сведения

Предохранение грунтов от промерзания основывается на уменьшении теплопроводности их поверхностного слоя способами, увеличивающими содержание воздуха и уменьшающими содержание воды. Практика показывает, что это — наиболее экономичный вид предэкскавационной подготовки грунтов, разработка которых планируется на первую и вторую трети зимы.

Задержание снегового покрова осуществляется путем устройства валов из грунта или снега, или установкой снегозадерживающих щитов. Расстояния между валами или линиями щитов должно составлять 10—15-кратную высоту вала или щита.

Глубокое рыхление является наиболее эффективным методом предохранения грунта от промерзания, но экономически невыгодным, так как в процессе его осуществления полутораметровый слой грунта дважды подвергается экскавации. Поэтому применять глубокое рыхление следует только при соответствующем технико-экономическом обосновании.

Предохранение грунтов от промерзания путем защиты термоизоляционными материалами (листва, опилки, стружка, шлак, земля и др.) может быть рекомендовано только для предохранения днища котлованов, в которых по техническим причинам фундаменты устраивают в зимнее время. Слой опилок толщиной 45 см, уложенный до наступления зимнего периода, позволяет в Европейской части страны сохранить грунт в талом состоянии до половины февраля.

Для вспахивания и перекрестного рыхления грунта могут быть использованы плуги и рыхлители на тракторной тяге. Работа производится в предзимний период.

Вспашка верхнего слоя только до известных пределов -предохраняет от промерзания нижележащие слои: как видно из табл. 7, при числе градусо-дней свыше 550—650 грунт под

вспаханным слоем промерзает на глубину до 40 см и разработка такого слоя мерзлоты без предварительной подготовки становится невозможной. В этом случае необходим иной способ предэкскавационной подготовки мерзлого грунта, его рыхление или оттаивание.

Для определения предельного времени разработки грунтов, защищенных от промерзания вспахиванием с учетом температур наружного воздуха за прошедший зимний период, можно воспользоваться данными табл., например, для района г. Актюбинска на 1 января сумма зимних градусо-дней составляет 522. Если грунт защищен от промерзания вспашкой и боронованием на глубину до 35 см, то, согласно данным табл., его разработку необходимо закончить не позднее 1 января. В противном случае произведенные затраты по предохранению грунта от промерзания будут бесполезны.

Утепление теплоизоляционными материалами днища котлована производится немедленно после его разработки; утепляющий слой удаляют с зачисткой основания непосредственно перед закладкой фундаментов или прокладкой трубопровода.

Задание №1.

Требуется определить необходимую толщину насыпки снега для защиты от промерзания основания котлована, разработка которого закончена к 15февраля, а устройство фундаментов намечено выполнить в течение февраля.

Район строительства — г. Казань, грунты — суглинки.

По табл. 3 с учетом данных табл. 2 и рис.1 устанавливаем, что незащищенное опилками древесными основание к 15февраля промерзнет на глубину 160см. Так как для снега P_i=2,5 (см. табл. 8), то

 $h_i = 160/2, 5 = 64cm.$

Для уменьшения толщины утепления целесообразно его сделать двухслойным: снег и сверху котельный шлак. Задаваясь толщиной слоя снега h_{ch} =50см, определяем толщину слоя шлака:

$$h_{\scriptscriptstyle
m III,T} = rac{H - h_{\scriptscriptstyle
m CH} * P_{\scriptscriptstyle
m CH}}{P_{\scriptscriptstyle
m III,T}} = rac{160 - 50 * 2.5}{1.4} = 25 {
m cm}$$

Следует отметить, что такие участки, на которых бетонирование фундаментов начнется в первых числах января, можно утеплить слоем меньшей толщины, что определяется расчетом.

Задание №2.

Требуется определить необходимую толщину засыпки снега для защиты от промерзания суглинистого грунта в основании котлована, если устройство фундаментов будет начато через 25 дней после отрывки котлована. По данным гидрометеостанции, в указанную декаду температура наружного воздуха будет удерживаться на уровне -10°C.

При отсутствии термоизоляционного слоя формула преобразуется:

$$H = \sqrt{\frac{4\tau\lambda_{\text{M}} * t_{\text{H.B}}}{(C_{\text{M}}t_{\text{H.B}} - 160i) * \gamma}} = \sqrt{\frac{4*600 * 2,3*(-10)}{(0.265*(-10) - 160*0,2)) * 1925}} = 3.1 \text{ cm}$$

Далее определяем толщину слоя шлаковой засыпки по методике первой задачи: $h = \frac{H}{P_{\rm rec}} = \frac{3.1}{2.5} = 1.24 \ {\rm cm}$

$$h = \frac{H}{P_{\text{CH}}} = \frac{3.1}{2.5} = 1.24 \text{ cm}$$

Форма отчетности:

Отчет должен содержать:

- 1. Цель работы.
- 2. Задание.
- 3. Поэтапное выполнение задания.
- 4. Заключение.

Основная литература [1] Дополнительная литература [2-4]

Практическое занятие №5.

<u>Тема:</u> Расчет на выносливость при низких температурах. Расчет на усталостную прочность <u>Цель работы:</u> Рассчитать выносливость при низких температурах, рассчитать усталостную прочность

Порядок выполнения:

Теоретические сведения

Проектирование состава бетона производят любым способом, принятым для летнего бетона, руководствуясь его требуемой маркой и подвижностью. Подвижность смеси принимается в зависимости от размеров бетонируемой конструкции. но при определении состава бетона в зимнее время следует стремиться к уменьшению расхода воды затворения, т. е. к снижению водоцементного отношения (В/Ц).

Водоцементное отношение в бетонах с добавками хлористых солей должно быть не более 0,65.

Приготовление бетонной смеси в зимних условиях отличается от приготовления ее в летнее время тем, что в первом- случае необходимо обеспечить определенную температуру смеси при выдаче ее из смесителя. Это требует расчета количества тепла, которое должна содержать смесь к концу перемешивания. В расчет входит определение температуры песка, крупного заполнителя и воды затворения. Основным теплоносителем является вода. Песок и крупный заполнитель подогревают только в случае, если максимально нагретая (до 90°C) вода затворения не обеспечивает получения бетонной смеси с заданной температурой. Необходимая температура бетонной смеси при выходе с бетонного завода зависит от метода выдерживания бетона в конструкции и теплопотерь при транспортировании и укладе, и не должна превышать значений.

Температура бетонной смеси с противоморозными добавками хлористых солей или поташа при выходе из смесителя назначается строительной лабораторией с учетом сроков схватывания, но не ниже -5^{0} С.

Бетонную смесь приготавливают в отапливаемом помещении с температурой воздуха не ниже $+5^{\circ}$ C; только смеси с добавкой хлористых солей или поташа могут готовиться и в холодном помещении.

При нагреве воды затворения до 90° С в бетономешалку загружают песок, щебень, воду и после предварительного перемешивания - цемент.

При бетонировании на открытом воздухе с применением любого способа выдерживания бетона в конструкции на бетонном заводе требуется нагрев заполнителей на 2-70° в зависимости от температуры наружного воздуха в интервале от -5 до -30° С. При бетонировании в холодных закрытых помещениях с применением способа термоса или активной теплозащиты требуется нагрев заполнителей на 5-55° в интервале наружных температур от -10 до -30° С. Размораживание и подогрев заполнителей бетонной смеси и закрытых штабелях, бункерах, сушильных барабанах, производятся в открытых вибротранспортных и других устройствах. Возможные схемы организации подогрева заполнителей на бетонном заводе. Рекомендуется схема с одноступенчатым подогревом щебня в складском штабеле и двухступенчатым подогревам песка, по которой заполнители оттаивают площадке хранения пространственными паровыми установленными над подштабельными галереями. Оттаявший щебень поступает на мокрого контрольного грохочения, a затем В расходный бетоносмесительной установки. Песок из штабеля направляется на установку подогрева, где нагревается по заданной температуре в сушильном барабане.

Температура нагрева составляющих устанавливается с учетом потерь тепла за время перемещения материалов от нагревательных устройств к смесителю.

Пользуясь номограммой (см. рис. 9), можно определить пределы изменений температур песка и щебня (гравия) и выбрать оптимальную температуру нагрева для отдельных заполнителей в зависимости от температуры воды затворения, влажности песка и

заданной температуры бетонной смеси. Номограмма составлена с учетом возможных колебаний весовой влажности песка в широких пределах, постоянной весовой влажности крупного заполнителя (1,5%). среднего состава бетонной смеси по весу 1:2.5:4,4 и $B/\ensuremath{\mathrm{L}}=0,6$. Отклонения состава смеси от приведенного незначительно влияют на конечный результат вычислений. Температура цемента при загрузке в бетономешалку принята O° С.

Теплопотребность для нагрева материалов от начальной температуры до необходимого уровня определяется с учетом часовой производительности смесительной установки по формулам:

```
для нагрева воды Q = w(q_{\rm B} - i_{\Pi}q_{\rm H} - i_{\Gamma}q_{\Gamma})(t_{\rm B} - 5); для нагрева песка Q = wq_{\Pi}[0.2(t_{\Pi} - t_{\rm H.H.}) + i_{\Pi}(t_{\Pi} - 0.5t_{\rm H.H} + 80)]; для нагрева щебня Q = wq_{\Gamma}[0.2(t_{\Gamma} - t_{\rm H.F.}) + i_{\Gamma}(t_{\Gamma} - 0.5t_{\rm H.F.} + 80)]; где -теплопотребность в ккал/ч;
```

w- часовая производительность смесительной установки в м³/ч;

 $q_{\rm B}, q_{\Gamma}, q_{\Pi}$ -соответственно количество воды, гравия и песка в 1 м³ бетонной смеси в кг;

 i_{Γ} , i_{Π} -относительная по весу влажность гравия и песка;

 $t_{\rm B}, t_{\rm \Gamma}, t_{\rm \Pi}$ -требующаяся температура воды, гравия и песка в момент загрузки смесителя в $^{\rm o}{\rm C}$;

 $t_{\text{И.Г.}}, t_{\text{И.П.}}$ -начальная температура гравия и песка при загрузке в подогревательное устройство в ${}^{\rm o}{\rm C.}$

Расход тепла для нагрева 1 м^3 заполнителей или $0,2 \text{ м}^3$ воды может определяться по номограмме(рис. 10).

Пример 7.

Требуется определить пределы возможных колебаний температуры гравия плеска, если известно, что необходимая температура бетонной смеси t_6 =35° C, температура воды затворения t_B =60° C и влажность песка $i_{\rm II}$ =14%.

На прямой (рис. 9), идущей от точки пересечения координат и отвечающей влажности песка t_{Π} =14%, интерполяцией между кривыми, соответствующими температуре воды затворения t_{B} =60°С и t_{B} =80°С, находим для бетонной смеси t_{6} =35°С точку, отвечающую температуре воды затворения 60°С. Из нее опускаем перпендикуляры на оси координат и точки пересечения соединяем прямой линией. Построенная прямая отсекает на осях координат пределы возможных изменений температур песка (ось абсцисс) и гравия (ось ординат): если температура песка изменяется от —15 до +80°С. то температура гравия изменяется соответственно от 80 до -2°С.

Пример 8.

Определить необходимую температуру песка, если температура бетонной смеси t_6 =5° C, температура воды затворения t_B =50° C, температура гравия в момент загрузки в смесительный барабан машины t_Γ =10° C и влажность песка t_Π =18%.

Из точки (см. рис. 9), полученной путем пересечения прямой, соответствующей влажности песка i_{Π} =18%.,проведенной из центра координат, с кривой, отвечающей 5Оградусной воде затворения и заданной температуре бетона t_6 =5° C, опускаем перпендикуляры на оси координат. Полученные точки пересечений перпендикуляров с осями координат соединяем прямой линией. Из точки, отвечающей на оси координат температуре гравия t_{Γ} =10° C, проводим прямую, параллельную оси абсцисс, до пересечения с ранее построенной прямой и получаем другую точку. Абсцисса этой точки является искомой температурой песка, в данном случае равной -7°C.

Пример 9.

Требуется определить температуру бетонной смеси, если известно, что температура песка $t_{\Pi}=20^{\circ}$ C, температура щебня $t_{\Gamma}=70^{\circ}$ C, температура воды затворения $t_{B}=80^{\circ}$ C, влажность песка $i_{\Pi}=2\%$.

Из точки (см. рис. 9), координаты которой отвечают заданной температуре песка и щебня, проводим прямую, параллельную соответствующей влажности песка i_{Π} =2% (правый нижний угол номограммы), до пересечения с осью координат. Из полученной точки проводим, прямую параллельно оси абсцисс до пересечения с прямой, идущей из центра координатной сетки и отвечающей влажности песка i_{Π} =2%, получим вторую точку. Для определения температуры бетона необходимо проинтерполировать эту вторую точку между ближайшими кривыми, соответствующими температуре воды затворения t_{B} =80°C и температуре бетона t_{G} =5°C и t_{G} =15°C. Интерполяцией находим, что искомая температура бетонной смеси равна 8° С.

Пример 10.

Требуется определить теплопотребность 1 м³ гравия объемным весом у= 2000 кг/м³, с содержанием льда 400 кг/м³. Конечная температура нагрева гравия t_{Γ} =80° C, начальная температура его t_{NL} =-20° C.

```
Определяем разность температур (рис. 10) t_{\Gamma} - t_{\text{И.В.}} = 80 + 20 = 100^{\circ} \text{ C} t_{\Gamma} - 0.5t_{\text{И.Г.}} + 80 = 80 + 0.5 \cdot 20 + 80 = 170^{\circ} \text{ C}
```

Из точки, соответствующей на шкале разности температур 1, $t_{\Gamma}-t_{\text{H.B.}}=100\,^{\circ}$ С, проводим прямую до пересечения с прямой в точке A, из которой восстанавливаем перпендикуляр к оси абсцисс до пересечения с прямой, соответствующей объемному весу 2000 кг/м², и получаем точку B. Из точки, соответствующей разности температур $t_{\Gamma}-0.5t_{\text{H.T.}}+80=170^{\circ}$ С, проводим прямую до пересечения с прямой, указывающей содержание льда в 1 м³ гравия 400 кг, и получаем точку С.

Из точки С проводим прямую параллельно оси ординат, а из точки — прямую, параллельную оси абсцисс, до взаимного пересечения в точке Д, которая отвечает теплопотребности $Q=98\,000$ ккал.

Форма отчетности:

Отчет должен содержать:

- 1. Цель работы.
- 2. Задание.
- 3. Поэтапное выполнение задания.
- 4. Заключение.

Основная литература [1] Дополнительная литература [2-4]

Практическое занятие №6.

<u>Тема:</u> Определение времени оттаивания мерзлого грунта <u>Цель работы:</u> Определить время оттаивания мерзлого грунта <u>Порядок выполнения:</u>

Теоретические сведения

Предэкскавационная подготовка мерзлого грунта оттаиванием применяется при производстве работ вблизи сооружений, когда невозможны динамические воздействия, возникающие при рыхлении грунтов взрывными или ударными способами на основания и фундаменты, а также при ремонтных работах и авариях подземных коммуникаций. Сущность метода оттаивания заключается в том, что тепло, вводимое в мерзлую толщу, расплавляет почвенный лед и обращает грунт в талое состояние.

Способы оттаивания грунтов можно классифицировать по виду теплоносителя, которым служат электричество, пар, вода, горячий воздух, и по направлению движения границы оттаивания — сверху вниз, т. е. от дневной поверхности вглубь, снизу вверх — от

нижней границы мерзлого слоя к дневной поверхности или в горизонтальном направлении — радиально от источника тепла. Эти три направления движения границы оттаивания могут быть достигнуты при использовании любого теплоносителя.

Расчеты показывают, что оттаивание грунта менее энергоемко при движении границы оттаивания снизу вверх. В этом случае прогрев грунта происходит под защитой мерзлой корки при отсутствии теплопотерь в воздух, а поскольку температуропроводность мерзлого грунта в 1,5—4 раза больше, чем талого, это обеспечивает движение тепла в мерзлую толщу, а не распространение его по талой части массива. Кроме того, нет необходимости доводить оттаивание до дневной поверхности, поскольку экскаваторы с емкостью ковша 0,5 м3 и более разрабатывают мерзлую корку толщиной до 40 см без предварительной подготовки. Эти соображения подтверждаются данными табл. 20, где сравниваются различные способы оттаивания при помощи местных тепляков, а также горизонтальных электродов, прогревающих слой мерзлоты сверху вниз с применением вертикальных электродов, циркуляционных игл и электроигл, под воздействием которых оттаивание распространяется радиально, и глубинных электродов, обеспечивающих оттаивание снизу вверх.

Эффективность отогрева мерзлых грунтов способами, обеспечивающими направление движения оттаивания снизу вверх и в радиальном направлении, очевидна. Но эти способы до сих пор не разработаны до расчетных положений, на основе которых можно было бы устанавливать технологию прогрева. При этом оттаивание грунта в радиальном направлении совсем не изучено; в каждом отдельном случае производственники решают эту задачу исходя из собственного опыта. Оттаивание снизу вверх, выполняемое с помощью глубинных электродов,

теоретически также мало изучено. Имеются только исследовательские работы НИИОМ.С (1948—1949 гг.), на результатах которых основана методика расчета длительности оттаивания грунта и количества расходуемого при этом электроэнергии (табл. 21). Но наблюдения, которые легли в основу данных этой таблицы, велись только по суглинистым грунтам при глубине промерзания не более 1,5 м. Электроды размещались в шахматном порядке с расстоянием между ними 50 см и были заглублены ниже границы промерзания на 15 см; напряжение на электродах составляло 220 в.

Аналогичных наблюдений над другими грунтами не производилось. Но приближенные значения длительности оттаивания и расхода энергии для песков, супесей и глин могут быть получены по данным той же табл. 21. Для этого фактическую глубину промерзания песка надо умножить на коэффициент 0,8, супеска —на 0,85, глины—на 1,25 и полученные значения принять за расчетную глубину промерзания.

Для оттаивания слоя мерзлого грунта толщиной 1,1 м при расчетной глубине промерзания 1,5 м потребность в оборудовании и материалах ориентировочно может быть определена по табл. 22.

Оттаивание мерзлых грунтов при движении границы оттаивания сверху вниз, несмотря на меньшую эффективность по сравнению с методом оттаивания снизу вверх, получило наибольшее распространение благодаря простоте производства работ. Широко применяется огневое оттаивание с использованием жидкого и газообразного топлива. Для этой цели применяют различные, изготовляемые силами трестовских мастерских, установки, состоящие из коробок и форсунок.

При длине короба 20—25 м грунт за 15—16 ч оттаивает на глубину 0,8 м; в течение остального времени суток оттаивание продолжается под действием тепла, аккумулированного верхним слоем грунта. Расход солярового масла составляет 4—5 кг на 1 м3 грунта. Производительность установок достигает 30 π^3 в смену.

При оттаивании грунта с помощью этих установок целесообразно применять переменный режим прогрева. За 6—8 ч работы установки грунт оттаивает на глубину 20—30 см; -в конце смены установку снимают и на поверхность прогретого грунта насыпают опилки слоем до 20 см, что обеспечивает его дальнейшее оттаивание на глубину до 1 м за 10—12 ч.

Пример №5.

Требуется определить потребную мощность электронагревательных приборов для оттаивания грунта на участке 200 м 2 при температуре воздуха -10 С. Грунт-суглинок объемным весом $\gamma=1925$ кг/м 3 и относительной влажностью i=20%. Ограждения электрообогревательного прибора - деревянные щиты $h_1=0,02$ м, слой опилок $h_2=0,1$ м и слой толя. Температура под прибором принята 60С.

Коэффициент теплопередачи ограждения прибора по формуле (7) равен:

$$k = \frac{1}{0.22 + \frac{0.02}{0.15} + \frac{0.1}{0.08}} = 0.63 \text{ ккал/м}^2 \cdot 4 \cdot \text{град}$$

По табл. 24 находим, что при температуре наружного воздуха -10С и коэффициенте теплопередачи ограждений прибора k=0,63 мощность, необходимая для компенсации тепловых потерь через ограждение, составляет 45,1 em на $1m^2$ поверхности оттаивания грунта. Затем определяем мощность поглощаемую грунтом. Так как удельная теплоемкость $C_{\rm M}$ мерзлого грунта по табл. 9 равна 0,265, а поправочный коэффициент (см. табл. 26) при температуре -10С равен 0,468, то условная удельная теплоемкость оттаиваемого грунта C=0,265+0,468=0,733. Принимая по табл.9 значение $\lambda_{\rm M}$ = 2,3, находим произведение $\lambda_{\rm M}C_{\rm V}$ = 2,3 · 0,733 · 1925 = 3245,36. Этому значению полученного произведения в табл.25 соответствует мощность, поглощаемая грунтом, равная 5,22 $\kappa em/m^2$. Следовательно, искомая мощность электронагревательных приборов для оттаивания мерзлого грунта поверхностью 200 m^2 составляет 5,22 · 200 + 0,0451 · 200 = 1053 κem .

Пример №6.

Требуется определить Требуется определить время оттаивания 1 м^3 мерзлого грунта при исходных данных предыдущего примера.

Приняв начальную температуру мерзлого грунта -10С, находим по табл.28, что время оттаивания на глубину 1 м равно 0,31 ч. но так как таблица составлена из коэффициента температуропроводности 1 м²/ч, определяем температуропроводность a данного грунта: $a = \frac{y_{\rm M}}{c_{\rm W}} = \frac{2,3}{0,733\cdot 1925} = 0,00163 \, {\rm M}^2/{\rm Y}$

Следовательно, время оттаивания грунта не будет равно табличному. Для того чтобы получить его, необходимо табличное время оттаивания разделить на коэффициент температуропроводности данного грунта: 0,31:0,00163=190 ч.

Следует отметить, что наиболее интенсивное оттаивание грунта наблюдается в первые часы прогрева при оптимальной температуре воздуха под электронагревательном прибором 40-60С. С течением времени интенсивность оттаивания падает и через 50 ч практически прекращается. Поэтому оттаивание рекомендуют производить по переменному режиму; 8ч прогрева и 4 ч распространение аккумулированного верхними слоями грунта тепла вниз и в стороны при выключенных приборах. Так как тепло распространяется также в стороны, приборы следует устанавливать с просветами между ними в 0,5-0,8м.

Форма отчетности:

Отчет должен содержать:

- 1. Цель работы.
- 2. Задание.
- 3. Поэтапное выполнение задания.
- 4. Заключение.

Основная литература
[1]
Дополнительная литература
[2-4]

Практическое занятие №7.

<u>Тема:</u> Определение эффективности применения методов разработки мерзлых грунтов <u>Цель работы:</u> Определить эффективность применения методов разработки мерзлых грунтов

Теоретические сведения

Земляные сооружения различают – по расположению относительно поверхности земли (выемок - углубление, насыпи – возвышения); по функциональному и временному назначению – постоянные и временные.

Временную выемку, имеющую ширину до 3 метров и длину, значительно превышающую ширину, называют траншеей. Выемку, длина которой равна ширине или не превышает десятикратной ее величины, называют котлованом.

Берма — узкая горизонтальная или слегка наклонная полоса, прерывающая линию откосов земляного полотна при большой их крутизне и длине.

Банкем — сооружение правильной формы (трапециидального или треугольного сечения) из грунта, отсыпаемого вдоль верхней бровки выемки для ограждения и защиты ее откосов от разлива поверхностными водами.

Контронкет — иное сооружение из камня или грунта, устраиваемое в виде присыпки к насыпи взамен подпорных стен. Сооружают на особо крутых косогорах у подошвы насыпей или полунасыпей - полувыемок в целях их укрепления или борьбы с выпором оснований.

Подошва насыпи – нижняя поверхность насыпи, опирающаяся на подстилающий грунт.

Резерв — территория, отдаваемая для разработки грунта неглубокими выработками правильной формы, из которых грунт используют для отсыпки насыпи автомобильных дороги. Резерв закладывают вблизи строящейся дороги непосредственно у основания насыпи с одной или двух ее сторон, или с нагорной стороны, а в случае невозможности — вдали от дороги на отведенном участке сосредоточенного грунтового карьера.

Кавальер — насыпь правильного профиля, образованная землей, взятой из выемки при сооружении дороги или канала и не использованной для самого сооружения; земляной вал, образовавшийся при рытье канала или канавы; насыпь вдоль дороги, сооружаемых из вынутого грунта; служит защитой от сточных вод и заносов.

По организационно - технологической структуре: земляные работы включают: подготовительные, основные и вспомогательные работы.

Подготовительные работы предшествуют основным и выполняются до начала разработки грунта и возведения земляных сооружений, подготовка территории к производству работ — очистка от деревьев, кустарников, снятие растительного слоя, геодезическое обеспечение работ; прокладка подъездных путей и т.п.

Основные работы включают разработку, перемещение и укладку грунта при устройстве выемок, насыпей и планировке территории для застройки.

Вспомогательные работы сопутствуют основным и выполняются на завершающей стадии возведения земляных сооружений: подготовка забоя для работы землеройных машин, рыхление плотных и мерзлых грунтов, водоотлив и водопонижение, искусственное закрепление грунтов, устройство ограждений, подмостей, переходов и другие мероприятия по охране труда, временное крепление стенок выемок и откосов, уплотнение грунта и т.п.

Состав, объем и очередность процессов, входящих в подготовительные основные и вспомогательные работы, определяется на стадии проектирования организации строительства и производства работ и уточнения при реализации ПОС и ППР.

Способы производства земляных работ:

Механический, гидравлический или гидромеханический, взрывной, комбинированный, физический, химический.

Выбор методов производства земляных работ в большей мере зависит от распределения земляных масс, которое сводится к нахождению направлений и средней дальности перемещения грунта (расстояния между центрами тяжести выемок и насыпи). Эффективность земляных работ зависит и вспомогательных работ.

Технико-экономические показатели производства

Земляных работ различными машинами.

Показатели	Взрыв на выброс	Гидромонито ры и землесосы	Землеснаряд ы	Скреперы	Бульдозеры	Эксков. с перевозкой грунта автотранс портом	Эксков., работающие в отвал
Дальность транспортировки грунта, м	100	1000- 2000	1000- 2000	500- 1500	50-100	2000-3000	15-150
Стоимость разработки 1 <i>м</i> ³ , руб.	0,8- 1,0	0,25- 0,61	0,2- 0,45	0,14- 0,6	0,0085- 0,25	0,17-0,95	0,05-0,23
Производительность на одного человека: тыс. M^3 в год	4,5-9	3,8-15	12,5- 23	5-40	6-76	2,8-34	20-180
м ³ /смену	15-30	20-75	60-115	25-222	30-400	13-136	80-700
Удельный расход энергии на разработку 1 <i>м</i> ³ грунта, кВт · ч	1,0- 1,5	2,5-5,0	2,0-3,0	3,2-6,0	1,6-2,4	4,7-7,0	0,75-0,9

Схемы комплексной механизации земляных работ одноковшовых экскаваторов выбирается в результате технико-экономических обоснования с учетом объемов работ, сроков их завершения, геометрических параметров земляного сооружения, условий производства работ, технологических возможностей экскаватора или ведущей машины в комплексе.

В зависимости от рабочего объема темпа производства земляных работ рекомендуется следующие типоразмеры одноковшовых типоразмеров (см. «К.М.З.Р.» стр. 41).

Месячный объем работ, тыс. м ³	Объем ковша, м ³
До 20	0,50,65
2060	11,25
70100	1,62,5
Более 100	2,53,5

Разработка грунта производится проходками. Пространство, в котором размещается экскаватор и разрабатывается грунт, называется забоем.

Основные схемы производства земляных работ,

выполняемых одноковшовыми экскаваторами.

Делятся на две основные группы: бестранспортные и транспортные.

Бестранспортные схемы производства работ – разрабатываемый экскаватором грунт укладывается в отвал, кавальер или в земляное сооружение.

Бестранспортные схемы бывают простые и сложные.

Простая бестранспортная схема – грунт укладывается в кавальер или насыпь без последующей его перевозки (переэкскавации).

Сложная бестранспортная схема – грунт укладывается экскаватором во временный (первичный отвал) и подлежит частичной или полной переэкскавации.

Транспортные – схемы, при котором грунт грузится экскаватором в самосвалы и отводится в заданное место.

При транспортных схемах разработки грунта возможны различные схемы движения грунтовозного транспорта: направление при работе прямой лопатой — тупиковые (при котором самосвалы подходят к экскаваторам и возвращаются по тому же пути) и сквозные (при которых автомобили подъезжают к экскаватору без маневрирования и уезжают после погрузки грунта по дороге, являющейся продолжением въездного пути).

Выбор схемы производства работ зависит от особенностей строительства. Так, в водохозяйственном, нефтегазопроводом строительстве преобладают - бестранспортные схемы работ, а в промышленности и химическом строительстве – транспортные.

Разработку грунта осуществляют лобовыми или боковыми проходками.

Лобовыми проходками разрабатывают траншеи с движением по оси траншеи.

Боковой проходкой называют такую, при которой ось движения экскаватора совпадает с осью земляного сооружения или находится в площади сечения.

При боковой проходке разрабатываются одновременно три откоса выемок — два боковых и торцовый.

Боковые проходки бывают двух типов: закрытая, в которой ось движения экскаватора располагается сбоку сечения выемок. Перемещаясь, экскаватор разрабатывает три откоса выемок — два боковых и торцовый; открытая, в которой экскаватор, перемещаясь вдоль разрабатываемой полосы, разрабатывает боковой и торцовый откосы.

Основные схемы производства работ одноковшовыми экскаваторами.

Производство работ прямой лопатой.

См. КМЗР. Стр.133, +Евдокимов стр.78. рис 27, 28, табл. 6, 7 и 8

Производство работ обратной лопатой.

МЗР. Стр. 17 и 19

Производство работ драглайном.

Евдокимов стр. 81, рис 30. стр. 82 табл. 2

и далее Евдокимов

При разгрузке одноковшовых экскаваторов в транспортные средства необходимо, чтобы емкость кузова автосамосвала превышала в 4-5 раз вместимость ковша экскаватора. Несоблюдение этого условия снижает производительность экскаватора. Так недопустима довольно широко практикуемая в строительстве работа трехкубовых экскаваторов с погрузкой грунта в пятитонные автосамосвалы, т.е. с погрузкой всего лишь одного ковша грунта в кузов автосамосвала.

В таблице 1 приведена рациональная грузоподъемность автосамосвалов в зависимости от емкости ковша экскаватора и дальности перемещения грунта.

Табл. 1 Рациональная грузоподъемность автосамосвалов (по СНиП III-8-76)

Расстояние	Емкость ковша, M^3							
транспортировки грунта, км	0,4	0,65	1,0	1,25	1,6	2,5	4,6	
0,5	4,5	4,5	7	7	10	-	-	
1,0	7	7	10	10	10	12	27	
1,5	7	7	10	10	12	18	27	
2,0	7	10	10	12	18	18	27	
3,0	7	10	12	12	18	27	40	
4,0	10	10	12	18	18	27	40	
5,0	10	10	12	18	18	27	40	

Исследования показали, что из одноковшовых экскаваторов для работы в комплекте с автосамосвалами при объеме работ на объекте до $200~m^3$ наиболее целесообразны

экскаваторы III размерной группы, а при больших объемах — экскаваторы IV — V размерных групп. В табл. 2 приведены данные об автосамосвалах, наиболее целесообразных для перевозок грунта I и III групп. Для грунтов II группы интерполяцией можно легко установить границы рационального перемещения автосамосвалов. При переходе от грунта I группы к грунтам III группы. Производительность экскаватора, а следовательно, и всего комплекса машин уменьшается.

Табл. 2 Рекомендуемое число автосамосвалов для работы одного одноковшового экскаватора.

n	Число самосвало	в при грузоподъем	ности, т			
Расстояние	5-7	10-12	25-27			
транспортировки, км	При емкости ковша, M^3					
KW	0,65	1,25	1,6-2,5	4,6		
0,5	3	4	5	3		
1,0	4	5	7	5		
1,5	5	5	8	6		
2	6	6	9	7		
3	7	8	10	9		
5	10	11	12	13		

Число транспортных единиц м.б. определено путем деления часовой производительности экскаватора на часовую производительность транспортное единицы:

$$N = \frac{\Pi_{\mathfrak{I}}}{\Pi_{C}},$$

Где $\Pi_{\mathfrak{Z}}$ - эксплуатационная производительность экскаватора, $\mathfrak{M}^3/\mathfrak{q}$;

 Π_{C} - производительность транспортных единиц, M^{3}/q ,

$$\Pi_C = n * q_n * m$$

Где q_n - вместимость транспортной единицы, M^3 ;

n – Число транспортных единиц (для одиночных автосамосвалов n=1);

m=60/T – число оборотов (циклов) транспортной единицы в час;

Т – полное время оборота одного транспортного состава в минутах,

$$T = t_n + \frac{60L_1}{v_1} + \frac{60L_2}{v_2} + t_p;$$

 Γ де t_n - время на загрузку одной транспортной единицы (состав) в мин;

$$t_n = \frac{60 * n/q_n}{\Pi_3};$$

 $\frac{60L_{\rm l}}{\nu_{\rm l}}$ - время на движение в груженом состоянии, мин;

 $\frac{60L_2}{V_2}$ - время обратного движения в порожнем состоянии, мин;

L – расстояние перевозки грунтов от забоя до отвала, км;

 V_1 - скорость движения груженого транспортного состава, км/ч;

 v_2 - скорость движения порожного транспортного состава, км/ч;

 $t_{_{\it p}}$ - время разгрузки одного состава, мин;

Производительность одного транспортного состава, $m^3 / 4$

$$\Pi_C = \frac{60 * n * q_n}{T} = \frac{60 * n * q_n}{t_n + \frac{60L}{V_1} + \frac{60L}{V_2} + t_p}$$

Следовательно, потребное число транспортных единиц

$$N = \frac{\Pi_{3}}{\Pi_{C}} = \frac{\Pi_{3} * \left(t_{p} + \frac{60L}{v_{1}} + \frac{60L}{v_{2}} + t_{n}\right)}{60 * n * q_{n}}$$

Разделив числитель и знаменатель в последней формуле на Π_2 , получим

$$N = \frac{\left(t_{p} + \frac{60L}{v_{1}} + \frac{60L}{v_{2}} + t_{n}\right)}{\frac{60 * n * q_{n}}{\Pi_{2}}},$$

Где знаменатель выражает время на загрузку экскаватором одной транспортной единицы

$$N = rac{\left(t_p + rac{60L}{v_1} + rac{60L}{v_2} + t_n
ight)}{t_n}$$
 или $N = rac{1 + \left(t_p + rac{60L}{v_1} + rac{60L}{v_2}
ight)}{t_n}$

В этой формуле первое слагаемое (1) обозначает транспортную единицу, находящуюся под погрузкой ее экскаватором, а второе слагаемое — число транспортных единиц, находящихся в обороте, т.е. в движении и под разгрузкой; в t_p и t_n входит и время на маневры транспортной единицы при погрузке и разгрузке.

Форма отчетности:

Отчет должен содержать:

- 1. Цель работы.
- 2. Задание.
- 3. Поэтапное выполнение задания.
- 4. Заключение.

Основная литература
[1]
Дополнительная литература
[2-4]

10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Информационно-коммуникационные технологии (ИКТ) – преподаватель использует для:

- получения информации при подготовке к лабораторным работам;
- создания презентационного материала для лабораторных работ;
- OC Windows 7 Professional (Microsoft Imagine Premium)
- Microsoft Office 2007 Russian Academic OPEN NO Level
- КОМПАС-3D V13

11. ОПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ

Вид занятия	Наименование аудитории	Перечень основного оборудования	№ ПЗ
1	2	3	4
П3	дисплейный класс с	ПК класса Пентиум – 10 шт.,	№ 1- № 6
	доступом к сети	программный комплекс	
	интернет	Microsoft Excel, Word	
Лк	дисплейный класс с	ПК класса Пентиум – 10 шт.,	-
	доступом к сети	программный комплекс	
	интернет	Microsoft Excel, Word	
CP	Ч3-1	-	-

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

1. Описание фонда оценочных средств (паспорт)

№ компетен ции	Элемент компетенции	Раздел	Тема	ФОС
ПСК-2.7	способность	1. Природно-	1.1 Содержание курса и его	Вопросы к
11010 2.7	разрабатывать	климатическа	связь с другими учебными	экзамену
	технологическу	Я	дисциплинами.	1-3
	ю документацию	характеристик	1.2 Климатические зоны РФ и	
	для	а районов с	характеристика районов с	
	производства,	холодным	холодным климатом.	
	модернизации,	климатом и	1.3 Характеристика мерзлых и	
	эксплуатации,	влияние	вечномерзлых грунтов.	
	технического	низких	1 15	
	обслуживания и	температур на		
	ремонта средств	эксплуатацию		
	механизации и	машин и		
	автоматизации	механизмов.		
	подъемно-	2. Конструктив	2.1 Особенности эксплуатации	Вопросы к
	транспортных,	ные	машин и механизмов при	экзамену
	строительных и	особенности	низких температурах. 2.2	4-6
	дорожных работ	машин,	Основные требования к	
		предназначен	обеспечению	
		ных для	работоспособности и	
		северных	надежности машин.	
		условий	2.3 Особенности конструкций	
		эксплуатации	машин.	
		3.Характерист	3.1 Влияние температуры на	Вопросы к
		ики металлов	сопротивление стали	экзамену
		при низких	хрупкому разрушению.	7-8
		температурах	3.2 Влияние конструкционных	
			и технологических факторов	
		4 Overavavavava	на хрупкость металлов.	Darmaarra
		4.Определени	4.1 Характер нагружения	Вопросы к
	способность	е нагрузок, действующих	рабочего оборудования. 4.2 Выбор основных	экзамену 9-10
ПК-10	разрабатывать	на рабочие	параметров одноковшовых	9-10
1110 10	технологическу	органы СДМ	экскаваторов и стреловых	
	ю документацию	при низких	самоходных кранов	
	для	температурах	исполнения ХЛ.	
	производства,	5. Расчет на	5.1 Расчет по предельному	Вопросы к
	модернизации,	прочность	состоянию наступления	экзамену
	эксплуатации,	элементов	текучести.	11-12
	технического	машин при	5.2 Расчет по предельному	
	обслуживания и	низких	состоянию наступления	
	ремонта	температурах	разрушения от	
	наземных	1 11	концентраторов.	
	транспортно-	6.Особенност	6.1 Классификация методов	Вопросы к
	технологических	И	разработки мерзлых грунтов.	экзамену

технол о и	тв и их производств земляных работ северных условиях	ва 6.2 Требования к конструкции и эксплуатации машин для в земляных работ в условиях мерзлых грунтов.	13-14
	7. Обеспечени экономичес й эффективно и проектиров ия и эксплуатаци машин для северных условий	решений. 7.2 Экономика решения технических задач. 7.3 Эффективность применения методов разработки мерзлых грунтов.	Вопросы к экзамену 15-17
	8. Техника безопасност при эксплуатаци машин в зимнее врем	8.2 Охрана труда машинистов СДМ в зимнее время.	Вопросы к экзамену 18-19

2. Экзаменационные вопросы

No		Компетенции	ЭКЗАМЕНАЦИОННЫЕ	№ и наименование
п/п	Код	Определение	вопросы	раздела
1	2	3	4	5
1.	ПСК- 2.7	способность разрабатывать технологическую	1.Содержание курса и его связь с другими учебными дисциплинами. 2.Климатические зоны РФ и характеристика районов с холодным климатом.	климатическая характеристика
		документацию для производства, модернизации, эксплуатации, технического обслуживания и ремонта средств механизации и автоматизации подъемно-	3. Характеристика мерзлых и вечномерзлых грунтов.	влияние низких температур на эксплуатацию машин и механизмов
		транспортных, строительных и дорожных работ	4.Особенности эксплуатации машин и механизмов при низких температурах. 5.Основные требования к обеспечению работоспособности и надежности машин. 6.Особенности конструкций	ые особенности машин,

			машин. 7.Влияние температуры на сопротивление стали хрупкому разрушению. 8.Влияние конструкционных и технологических факторов на хрупкость металлов.	3. Характеристики металлов при низких температурах
			9. Характер нагружения рабочего оборудования. 10. Выбор основных параметров одноковшовых экскаваторов и стреловых самоходных кранов исполнения XЛ.	4. Определение нагрузок, действующих на рабочие органы СДМ при низких температурах
2.	ПК-10	способность разрабатывать технологическую документацию для производства, модернизации,	11.Расчет по предельному состоянию наступления текучести. 12.Расчет по предельному состоянию наступления разрушения от концентраторов.	5.Расчет на прочность элементов машин при низких температурах
		эксплуатации, технического обслуживания и ремонта наземных транспортно- технологических средств и их технологического и оборудования	13.Классификация методов разработки мерзлых грунтов. 14.Требования к конструкции и эксплуатации машин для земляных работ в условиях мерзлых грунтов.	6. Особенности производства земляных работ в северных условиях
			15. Экономическое обоснование организационных решений. 16. Экономика решения технических задач. 17. Эффективность применения методов разработки мерзлых грунтов.	7. Обеспечение экономической эффективности проектирования и эксплуатации машин для северных условий
			18. Техника безопасности при разработке мерзлых грунтов. 19. Охрана труда машинистов СДМ в зимнее время.	8. Техника безопасности при эксплуатации машин в зимнее время

2. Описание показателей и критериев оценивания компетенций

Показатели	Оценка	Критерии
Знать: (ПСК-2.7) методики и требования к разработке и применению технологической документации для эксплуатации, технического обслуживания и ремонта средств механизации и автоматизации подъемнотранспортных, строительных и дорожных работ; (ПК-10) - нормы разработки технологической документации для производства, модернизации, эксплуатации, технического обслуживания и ремонта наземных транспортно-технологических средств и их технологического оборудования; Уметь: (ПСК-2.7) разрабатывать и применять на практике технологическую документацию для эксплуатации, технического обслуживания и ремонта средств механизации и автоматизации подъемнотранспортных, строительных и дорожных работ;	отлично	Оценка «отлично» выставляется обучающемуся, если он демонстрирует полное освоение теоретического содержания дисциплины; представляет практические навыки работы на учебных стендах учетом основных требований безопасности; все учебные задания выполнены правильно, качество их выполнения оценено числом баллов, близким к максимальному.
(ПК-10) - разрабатывать технологическую документацию для производства, модернизации, эксплуатации, технического обслуживания и ремонта наземных транспортно-технологических средств и их технологического оборудования; Владеть:	хорошо	Оценка «хорошо» выставляется обучающемуся, если в усвоении учебного материала им допущены небольшие пробелы, не исказившие
(ПСК-2.7) основными методиками и требованиями к разработке и применению технологической документации для эксплуатации, технического обслуживания и ремонта средств механизации и автоматизации подъемно-транспортных,		содержание ответа; допущены один – два недочета в формировании навыков решений практических задач.
строительных и дорожных работ. (ПК-10) - навыками разработки технологической документации для производства, модернизации, эксплуатации, технического обслуживания и ремонта наземных транспортно-технологических средств и их технологического оборудования;	удовлетво- рительно	Оценка «удовлетворительно» выставляется обучающемуся, если в его ответе содержание теоретического материала раскрыто неполно, но показано общее понимание вопроса и

неудовлет-	обучающийся	
ворительно	демонстрирует полное	
	отсутствие знаний	
	основных понятий	
	конструкций наземных	
	транспортно-	
	технологических	
	систем,	
	навыков решения	
	практических задач	
	на учебных стендах.	
	, ,	

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности

Изучение дисциплины «Основы конструирования машин для северных условий эксплуатации» охватывает круг вопросов, относящихся к проектно-конструкторскому виду профессиональной деятельности выпускника в соответствии с компетенциями и видами деятельности, указанными в учебном плане.

При подготовке к экзамену рекомендуется особое внимание уделить следующим вопросам:

- 1. Природно-климатическая характеристика районов с холодным климатом и влияние низких температур на эксплуатацию машин и механизмов.
- 2. Расчет на прочность элементов машин при низких температурах.
- 3. Особенности производства земляных работ в северных условиях.
- 4. Определение нагрузок, действующих на рабочие органы СДМ при низких температурах.

Закрепление всех вопросов, рекомендуемых для практических работ, а также при подготовке к экзамену, требует основательной самостоятельной подготовки. Учитывая значимость самостоятельной работы, литература, вопросы для самопроверки - в разделах «Практическая работа» и «Фонд оценочных средств».

Работа с литературой является обязательной. При этом приветствуется привлечение дополнительных источников из Интернета. В случае возникновения определенных вопросов, обучающийся может обратиться к преподавателю за консультацией как на практических работах, так и во время индивидуальных консультаций.

Предусмотрено проведение аудиторных занятий в виде лекций, практических работ в сочетании с внеаудиторной работой.

АННОТАЦИЯ

рабочей программы дисциплины Основы конструирования машин для северных условий эксплуатации

1. Цели и задачи дисциплины

Целью изучения дисциплины является: подготовка будущего инженера к решению профессиональных, научно-технических задач в сфере теории и современных методов проектирования и расчета элементов узлов и деталей, работающих при низких температурах.

Задачей изучения дисциплины является: изучение конструктивных особенностей машин, предназначенных для эксплуатации в районах с холодным климатом, изучение влияния низких температур на свойства материалов и обрабатываемой среды, изучение методов расчета на прочность при низких температурах, привитие навыков самообразования и самосовершенствования, содействие средствами данной дисциплины развитию у инженеров личностных качеств, определяемых общими целями обучения и воспитания.

2. Структура дисциплины

2.1 Распределение трудоемкости по отдельным видам учебных занятий, включая самостоятельную работу: Лк – 17 час., Π 3 - 17 час., CP – 227 час. Общая трудоемкость дисциплины составляет 288 часа, 8 зачетных единицы.

2.2 Основные разделы дисциплины:

- 1. Природно-климатическая характеристика районов с холодным климатом и влияние низких температур на эксплуатацию машин и механизмов
- 2. Конструктивные особенности машин, предназначенных для северных условий эксплуатации
- 3. Характеристики металлов при низких температурах
- 4. Определение нагрузок, действующих на рабочие органы СДМ при низких температурах
- 5. Расчет на прочность элементов машин при низких температурах
- 6. Особенности производства земляных работ в северных условиях
- 7. Обеспечение экономической эффективности проектирования и эксплуатации машин для северных условий
- 8. Техника безопасности при эксплуатации машин в зимнее время

3. Планируемые результаты обучения (перечень компетенций)

Процесс изучения дисциплины направлен на формирование следующих компетенций:

- ПСК-2.7- способность разрабатывать технологическую документацию для производства, модернизации, эксплуатации, технического обслуживания и ремонта средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ;
- ПК-10 способность разрабатывать технологическую документацию для производства, модернизации, эксплуатации, технического обслуживания и ремонта наземных транспортнотехнологических средств и их технологического и оборудования;

4. Вид промежуточной аттестации: экзамен.

Протокол о дополнениях и изменениях в рабочей программе на 20___-20___ учебный год

1. В рабочую программу по дисциплине вносятся следующие дополнения:		
2. В рабочую программу по дисциплине вносятся следующие изменения:		
Протокол заседания кафедры СДМ № от «» 20 г.,		
Заведующий кафедрой		
(подпись)	(Ф.И.О.)	

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ПО ДИСЦИПЛИНЕ

1. Описание фонда оценочных средств (паспорт)

		оценочных среоств (паспа 	<i> </i>	
№ компе тенци и	Элемент компетенции	Раздел	Тема	ФОС
ПК-10	способность разрабатывать технологическу ю документацию для производства, модернизации, эксплуатации, технического обслуживания и ремонта наземных	1. Природно- климатическая характеристика районов с холодным климатом и влияние низких температур на эксплуатацию машин и механизмов.	1.1 Содержание курса и его связь с другими учебными дисциплинами. 1.2 Климатические зоны РФ и характеристика районов с холодным климатом. 1.3 Характеристика мерзлых и вечномерзлых грунтов.	Вопросы к коллоквиуму 1-3
ПСК- 2.7	транспортно- технологически х средств и их технологическо го и оборудования способность разрабатывать	2.Конструктивные особенности машин, предназначенных для северных условий эксплуатации	2.1 Особенности эксплуатации машин и механизмов при низких температурах. 2.2 Основные требования к обеспечению работоспособности и надежности машин. 2.3 Особенности конструкций машин.	Вопросы к коллоквиуму 4-6
	технологическу ю документацию для производства, модернизации, эксплуатации, технического обслуживания и ремонта	3. Характеристики металлов при низких температурах	3.1 Влияние температуры на сопротивление стали хрупкому разрушению. 3.2 Влияние конструкционных и технологических факторов на хрупкость металлов.	Вопросы к коллоквиуму 7-8
	средств механизации и автоматизации подъемно- транспортных, строительных и дорожных работ	4.Определение нагрузок, действующих на рабочие органы СДМ при низких температурах	4.1 Характер нагружения рабочего оборудования. 4.2 Выбор основных параметров одноковшовых экскаваторов и стреловых самоходных кранов	Вопросы к коллоквиуму 9-10

	исполнения ХЛ.
5. Расчет на прочност	
элементов машин при	
низких температурах	состоянию Вопросы к
	наступления экзамену
	текучести. 11-12
	5.2 Расчет по
	предельному
	состоянию
	наступления
	разрушения от
	концентраторов.
6.Особенности	6.1 Классификация Вопросы к
производства землян	1
работ в северн	
условиях	6.2 Требования к
	конструкции и
	эксплуатации машин
	для земляных работ в
	условиях мерзлых
	грунтов.
7. Обеспечение	7.1 Экономическое Вопросы к
экономической	обоснование экзамену
эффективности	организационных 15-17
проектирования и	решений.
эксплуатации машин	7.2 Экономика
для северных условий	решения технических
	задач.
	7.3 Эффективность
	применения методов
	разработки мерзлых
	грунтов.
8. Техника	8.1 Техника Вопросы к
безопасности при	безопасности при экзамену
эксплуатации машин	
зимнее время	грунтов.
	8.2 Охрана труда
	машинистов СДМ в
	зимнее время.

2. Описание показателей и критериев оценивания компетенций

Показатели	Оценка	Критерии
Знать		
 ПК-10: нормы разработки технологической документации для производства, модернизации, эксплуатации, технического обслуживания и ремонта наземных транспортнотехнологических средств и их технологического оборудования; ПСК-2.7: методики и требования к разработке и применению технологической документации для эксплуатации, технического обслуживания и ремонта средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ; Уметь 	отлично	Оценка «отлично» выставляется обучающемуся, если он демонстрирует полное освоение теоретического содержания дисциплины; представляет практические навыки работы на учебных стендах учетом основных требований безопасности; все учебные задания выполнены правильно, качество их выполнения оценено числом баллов, близким к максимальному.
 ПК-10: разрабатывать технологическую документацию для производства, модернизации, эксплуатации, технического обслуживания и ремонта наземных транспортнотехнологических средств и их технологического оборудования; ПСК-2.7: разрабатывать и применять на 	хорошо	Оценка «хорошо» выставляется обучающемуся, если в усвоении учебного материала им допущены небольшие пробелы, не исказившие содержание ответа; допущены один – два недочета в формировании навыков решений практических задач.
практике технологическую документацию для эксплуатации, технического обслуживания и ремонта средств механизации и автоматизации подъемно-транспортных, строительных и дорожных работ;	удовлетво- рительно	Оценка «удовлетворительно» выставляется обучающемуся, если в его ответе содержание теоретического материала раскрыто неполно, но показано общее понимание вопроса и
Владеть		-
 ПК-10: навыками разработки технологической документации для производства, модернизации, эксплуатации, технического обслуживания и ремонта наземных транспортно-технологических средств и их технологического оборудования; ПСК-2.7: основными методиками и требованиями к разработке и применению технологической 	неудовлет- ворительно	обучающийся демонстрирует полное отсутствие знаний основных понятий конструкций наземных транспортно-технологических систем, навыков решения практических задач на учебных стендах.

документации для эксплуатации,	
технического обслуживания и ремонта	
средств механизации и автоматизации	
подъемно-транспортных, строительных	
и дорожных работ.	

Вопросы для коллоквиумов, собеседования

по дисциплине Б1.В.ДВ.07.01 Основы конструирования машин для северных условий эксплуатации

Раздел 1

- 1 Основные понятия курса
- 2 Климатические зоны РФ и характеристика районов с холодным климатом.
- 3 Характеристика мерзлых и вечномерзлых грунтов.

Раздел 2

- 1 Особенности эксплуатации машин и механизмов при низких температурах
- 2 Основные требования к обеспечению работоспособности и надежности машин
- 3 Особенности конструкций машин

Раздел 3

- 1 Влияние температуры на сопротивление стали хрупкому разрушению
- 2 Влияние конструкционных и технологических факторов на хрупкость металлов.

Раздел 4

- 1 Характер нагружения рабочего оборудования.
- 2 Выбор основных параметров одноковшовых экскаваторов и стреловых самоходных кранов исполнения ХЛ.

Программа составлена в соответствии с федеральным государственным образовательным стандартом высшего образования по специальности 23.05.01. Наземные транспортно-технологические средства от «11» августа 2016г. № 1022

для набора 2013 года: и учебным планом ФГБОУ ВО «БрГУ» для заочной формы обучения от «03» июля 2018 г. № 413,

<u>для набора 2014 года:</u> и учебным планом ФГБОУ ВО «БрГУ» для очной формы обучения от «03» июля 2018 г. № 413, для заочной формы обучения от «03» июля 2018 г. № 413.

Программу составил:	
Зеньков Сергей Алексеевич, к.т.н., доцент	
Рабочая программа рассмотрена и утверждена на заседании кафедры СДМ	
от « » 2018 г., протокол №	
И.о. заведующего кафедрой СДМ	К.Н. Фигура
СОГЛАСОВАНО:	
И.о. заведующего кафедрой СДМ	К.Н. Фигура
Директор библиотеки	Т.Ф. Сотник
Рабочая программа одобрена методической комиссией МФ от «» 2018 г., протокол №	
Председатель методической комиссии МФ	Г.Н.Плеханов
СОГЛАСОВАНО:	
Начальник учебно-методического управления	Г.П. Нежевец
Регистрационный №	